A General Class of Chain Ratio-Product Type Exponential Estimators in Double Sampling using Two Auxiliary Variates

Gajendra K. Vishwakarma
Department of Applied Mathematics
Indian School of Mines

Manish Kumar
Department of Applied Mathematics
Indian School of Mines

Raj K. Gangele
Department of Mathematics and Statistics
Dr. H. S. Gour University

In this paper, a general class of chain ratio-product type exponential estimators has been proposed for estimating a finite population mean in presence of two auxiliary variates under double sampling scheme. The expressions for bias and mean square error (MSE) of the proposed class are derived up to the first degree of approximation. Also, the expression of asymptotic optimum estimator (AOE) in the proposed class is obtained. Some estimators are shown to be particular members of the proposed class. The proposed class has been compared for its precision with the usual unbiased estimator and several other estimators of the literature. In addition, an empirical study is also carried out in support of theoretical findings.

Keywords: auxiliary variates, study variate, double sampling, bias, mean square error

1. Introduction
The estimation of population parameters (such as the mean and/or variance) of a study variate is a common issue in sample surveys. Utilizing information on auxiliary variates, a great variety of techniques have been developed in sampling literature for improving the efficiencies of the estimators of population parameters.
Ratio, product and regression methods of estimation are good examples in this context and are widely employed in many situations of practical importance.

A ratio estimator for estimating the population mean \(\bar{Y} \) of a study variate \(Y \), by utilizing the population mean \(\bar{X} \) of an auxiliary variate \(X \), which is positively correlated with \(Y \) was developed by Cochran (1940). Robson (1957) defined a product estimator for \(\bar{Y} \) that was revisited by Murthy (1964). The product estimator \(\bar{Y} \) is preferred when the correlation coefficient between the variates \(Y \) and \(X \) (i.e., \(\rho_{yx} \)) is negative. However, in many situations, the population mean \(\bar{X} \) of the auxiliary variate \(X \) is not known in advance. In such a situation, double sampling technique is adopted. Neyman (1938) was the first to give the concept of double sampling in connection with collecting information on the strata size in a stratified sampling. The problem of double sampling has been studied by various authors. For further information on applications of double sampling methods the reader is referred to Hidiroglou and Sarndal (1998), Fuller (2000), and Hidiroglou (2001). We can use one, two or more auxiliary variates in estimating population mean. Keeping this fact in view, Chand (1975) introduced chain ratio type estimators for the population mean \(\bar{Y} \). This led several authors including Kiregyera (1980), Singh and Upadhyaya (1995), Prasad et al. (1996), Singh and Choudhury (2012), Vishwakarma and Gangele (2014), and Vishwakarma and Kumar (2014) to modify the chain type estimators and discuss their properties.

Let \(U = \{U_1, U_2, \ldots, U_N\} \) be a finite population of size \(N \). Also, let \(Y \) and \(X \) be the study and auxiliary variates taking the values \(y_i \) and \(x_i \) respectively, on the unit \(U_i \) \((i = 1, 2, \ldots, N)\). For estimating the population mean \(\bar{Y} \) in double sampling, a first phase sample of size \(n' \) is selected from the population \(U \) and observations are made only on the variate \(X \). Subsequently, a second phase sample of size \(n \) is selected from the first phase sample on which both the variates \(Y \) and \(X \) are observed.

Sometimes, information on another auxiliary variate \(Z \), which is closely related to \(X \) but compared to \(X \) remotely related to \(Y \), is available on all units of the population. Let \(\bar{Z} \) be the known population mean of \(Z \) and \(C_{xz}C_z/C_x > 1/2 \), where \(C_x, C_z \) and \(\rho_{xz} \) denote, respectively, the coefficient of variation of \(X \), the coefficient of variation of \(Z \), and the correlation coefficient between \(X \) and \(Z \). Then in such a situation the ratio estimator \(\bar{x}Z/\bar{z} \) will estimate \(\bar{X} \) more precisely than \(\bar{x}' \) to terms of order \(O(n^{-1}) \). Using this approach Chand (1975) suggested a chain ratio estimator for \(\bar{Y} \) in double sampling as

\[
\bar{Y}_R^{(C)} = \bar{y} \left(\frac{x}{\bar{X}} \frac{\bar{Z}}{\bar{z}} \right)
\] (1.1)
2. Proposed Class of Estimators

We define a class of chain ratio-product type exponential estimators for the population mean \bar{Y} in double sampling as

$$T = \bar{Y} \left[k \exp \left\{ \frac{\bar{x} - (\alpha \bar{z} + \beta)}{(\alpha \bar{z} + \beta) + \bar{x}} \right\} + (1-k) \exp \left\{ \frac{\bar{x} - (\alpha \bar{z} + \beta)}{(\alpha \bar{z} + \beta) + \bar{x}} \right\} \right]$$

where, α and β denote the scalars, k is a real constant to be determined so as to minimize the mean square error (MSE) of the proposed class T.

To obtain the bias and MSE of the proposed class of estimators T, we consider

$$\bar{y} = \bar{y} (1 + e_0), \bar{x} = \bar{x} (1 + e_1), \bar{x}' = \bar{x} (1 + e_1'), \bar{z} = \bar{z} (1 + e_2')$$

such that

$$E(e_0) = E(e_1) = E(e_1') = E(e_2') = 0$$

Also, we have

$$E(e_0^2) = f_1 C_y^2, E(e_1^2) = f_1 C_x^2, E(e_1'^2) = f_2 C_x^2, E(e_2'^2) = f_2 C_z^2$$

$$E(e_0 e_1) = f_1 \rho_{yx} C_y C_x, E(e_0 e_1') = f_2 \rho_{yx} C_y C_x, E(e_0 e_2') = f_2 \rho_{yz} C_y C_z$$

$$E(e_1 e_1') = f_2 C_x^2, E(e_1 e_2') = f_2 \rho_{xz} C_x C_z, E(e_1' e_2') = f_2 \rho_{xz} C_x C_z$$

where,

$$f_1 = \left(\frac{1}{n} - \frac{1}{N} \right), f_2 = \left(\frac{1}{n'} - \frac{1}{N} \right), f_3 = f_1 - f_2 = \left(\frac{1}{n} - \frac{1}{n'} \right),$$

$$C_y^2 = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N-1}, C_x^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1}, C_z^2 = \frac{\sum_{i=1}^{N} (z_i - \bar{z})^2}{N-1},$$

$$\rho_{yx} = \frac{S_{yx}}{S_x S_y}, \rho_{yz} = \frac{S_{yz}}{S_y S_z}, \rho_{xz} = \frac{S_{xz}}{S_x S_z},$$

$$S_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2, S_y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \bar{y})^2, S_z^2 = \frac{1}{N-1} \sum_{i=1}^{N} (z_i - \bar{z})^2,$$
\[S_{yx} = \frac{1}{(N-1)} \sum_{i=1}^{N} (y_i - \bar{y})(x_i - \bar{x}), \quad S_{yz} = \frac{1}{(N-1)} \sum_{i=1}^{N} (y_i - \bar{y})(z_i - \bar{z}), \]
\[S_{xz} = \frac{1}{(N-1)} \sum_{i=1}^{N} (x_i - \bar{x})(z_i - \bar{z}). \]

Now, expressing \(T \) in terms of \(e \)'s, we have
\[
T = \bar{y} (1 + e_0) \left[k \exp(U_1) + (1 - k) \exp(U_2) \right]
\] (2.3)

where
\[
U_1 = \frac{1}{2} (e_1^2 - \lambda_1 e_2^2 - e_1 - \lambda_1 e_1 e_2^2) \left\{ 1 + \frac{1}{2} (e_1^2 + \lambda_1 e_2^2 + e_1 + \lambda_1 e_1 e_2^2) \right\}^{-1}
\]
\[
U_2 = \frac{1}{2} (\lambda_2 e_2^2 + e_1 + \lambda_1 e_1 e_2^2 - e_1^2) \left\{ 1 + \frac{1}{2} (e_1^2 + \lambda_2 e_2^2 + e_1 + \lambda_1 e_1 e_2^2) \right\}^{-1}; \lambda_1 = \frac{\alpha \bar{z}}{\alpha \bar{z} + \beta}
\]

Expanding the right hand side of (2.3), multiplying out and retaining the terms of \(e \)'s up to the second degree, we obtain
\[
T = \bar{y} \left[1 + k(e_1^2 - \lambda_1 e_2^2 - e_1 + e_0 e_1^2 - \lambda_1 e_0 e_2^2 - e_0 e_1) - \frac{k}{2}(e_1^2 - \lambda_1 e_2^2 - e_1^2) + e_0 - \frac{1}{2}(e_1^2 - \lambda_1 e_2^2 - e_1 + e_0 e_1^2 - \lambda_1 e_0 e_2^2 - e_0 e_1)
\]
\[+ \frac{1}{4} (e_1^2 - \lambda_1 e_2^2 - e_1^2 - \lambda_1 e_1 e_2^2 + \lambda_1 e_0 e_2^2 - e_0 e_1) + \frac{1}{8}(e_1^2 + \lambda_1 e_2^2 + e_1^2) \]
\] or
\[
T - \bar{y} = \bar{y} \left[k(e_1^2 - \lambda_1 e_2^2 - e_1 + e_0 e_1^2 - \lambda_1 e_0 e_2^2 - e_0 e_1) - \frac{k}{2}(e_1^2 - \lambda_1 e_2^2 - e_1^2)
\]
\[+ e_0 - \frac{1}{2}(e_1^2 - \lambda_1 e_2^2 - e_1 + e_0 e_1^2 - \lambda_1 e_0 e_2^2 - e_0 e_1)
\]
\[+ \frac{1}{4} (e_1^2 - \lambda_1 e_2^2 - e_1^2 - \lambda_1 e_1 e_2^2 + \lambda_1 e_0 e_2^2 - e_0 e_1) + \frac{1}{8}(e_1^2 + \lambda_1 e_2^2 + e_1^2) \] (2.4)

Taking the expectation in (2.4) and using results in (2.2), we get the bias of the class \(T \) to the first degree of approximation as
Again from (2.4), by neglecting the terms of e's having degree greater than one, we have

\[T - \bar{Y} = Y \left[k (e'_1 - \lambda_1 e'_2 - e_1) + e_0 - \frac{1}{2} (e'_1 - \lambda_1 e'_2 - e_1) \right] \] (2.6)

Squaring both sides of (2.6), taking the expectation and using results in (2.2), we obtain the MSE of the class T to the first degree of approximation as

\[\text{MSE}(T) = \bar{Y}^2 \left[f_1 c_2^2 + \frac{(2k-1)^2}{4} \{ f_2 c_2^2 + \lambda_1^2 f_2 c_2^2 \} - (2k-1) \{ f_3 \rho_{yx} C_y C_x + \lambda_1 f_3 \rho_{yx} C_y C_z \} \right] \] (2.7)

2.1 Asymptotic optimum estimator

Minimization of \(\text{MSE}(T) \) in (2.7) with respect to \(\lambda_1 \) yields the optimum value of \(\lambda_1 \) as

\[\left(\lambda_1 \right)_{\text{opt}} = \frac{2 \rho_{yx} C_y}{(2k-1) C_z} \] (2.8)

Substituting (2.8) in (2.7) and minimizing again the expression of \(\text{MSE}(T) \), so obtained, with respect to \(k \), we get the optimum value of \(k \) as

\[\left(k \right)_{\text{opt}} = \frac{1}{2} \left(\frac{2 \rho_{yx} C_y}{C_z} + 1 \right) \] (2.9)

Hence the minimum attainable MSE of the class T is given by

\[\text{MSE}(T)_{\text{min}} = \bar{Y}^2 C_y^2 \left(f_1 - f_3 \rho_{yx}^2 - f_2 \rho_{yx}^2 \right) \] (2.10)

Substituting (2.9) in (2.1), we get the asymptotic optimum estimator (AOE) as

\[T_{\text{opt}} = \bar{Y} \left(\frac{\rho_{yx} C_y}{C_z} + \frac{1}{2} \right) \exp \left\{ \frac{\bar{x}^2 (\alpha \bar{Z} + \beta) - \bar{x}}{(\alpha \bar{x} + \beta) (\alpha \bar{x} + \beta) + \bar{x}} \right\} \]

Vishwakarma et al.
\[+ \left(\frac{1}{2} - \frac{\rho_{yx} C_y}{C_x} \right) \exp \left\{ \frac{\bar{x}' - \bar{x}}{\alpha \bar{z}' + \beta} \left(\alpha \bar{Z} + \beta \right) \right\} \]

(2.11)

Remark 2.1. For \(\frac{\rho_{yx} C_y}{C_x} = \frac{1}{2} \), the asymptotic optimum estimator (AOE) in (2.11) reduces to the class of chain ratio-type exponential estimators, as given in Vishwakarma and Gangele (2014).

3. Members of the Proposed Class of Estimators

In Table 1, some of the members of the class \(T \) have been shown. These members are obtained by assigning suitable values to the constants \(k, \alpha \) and \(\beta \) in (2.1). The expressions for the bias and MSE of these members can be obtained by mere substituting the values of \(k, \alpha \) and \(\beta \) in (2.5) and (2.7), respectively. It has also been verified, with the help of an empirical study, that these members are not optimum in the proposed class.

Table 1. Members of the Class of Estimators \(T \)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Estimators</th>
<th>(k)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singh and Vishwakarma (2007)</td>
<td>(\hat{Y}_{ReMd} = \bar{y} \exp \left(\frac{x' - x}{x + x} \right))</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\hat{Y}_{PeMd} = \bar{y} \exp \left(\frac{x - x'}{x + x'} \right))</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Singh and Choudhury (2012)</td>
<td>(\hat{Y}^{dc}_{Re} = \bar{y} \exp \left{ \left(\frac{x'}{x} \bar{Z} - \bar{x} \right) / \left(\frac{x'}{x} \bar{Z} + \bar{x} \right) \right})</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(\hat{Y}^{dc}_{Pe} = \bar{y} \exp \left{ \left(\bar{x} - \frac{x'}{x} \bar{Z} \right) / \left(\bar{x} + \frac{x'}{x} \bar{Z} \right) \right})</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Vishwakarma and Gangele (2014)</td>
<td>(\hat{Y}_{VS} = \bar{y} \exp \left[\frac{x' (\alpha \bar{Z} + \beta)}{\alpha \bar{Z}' + \beta} - \bar{x} \right] / \left(\frac{x' (\alpha \bar{Z} + \beta)}{\alpha \bar{Z}' + \beta} + \bar{x} \right))</td>
<td>1</td>
<td>(\alpha)</td>
<td>(\beta)</td>
</tr>
<tr>
<td>Vishwakarma and Kumar (2014)</td>
<td>(\hat{Y}^{dc}_{RPe} = \bar{y} \left[k \exp \left{ \left(\frac{x'}{x} \bar{Z} - \bar{x} \right) / \left(\frac{x'}{x} \bar{Z} + \bar{x} \right) \right} \right] + (1 - k) \exp \left{ \left(\bar{x} - \frac{x'}{x} \bar{Z} \right) / \left(\bar{x} + \frac{x'}{x} \bar{Z} \right) \right})</td>
<td>(k)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
To the first degree of approximation, the MSE expressions of various estimators are

\[
MSE(\hat{Y}_{ReMd}) = Y^2 \left\{ f_1 C_y^2 + f_3 \left(\frac{1}{4} C_x^2 - \rho_{yx} C_y C_x \right) \right\} \tag{3.1}
\]

\[
MSE(\hat{Y}_{PeMd}) = Y^2 \left\{ f_1 C_y^2 + f_3 \left(\frac{1}{4} C_x^2 + \rho_{yx} C_y C_x \right) \right\} \tag{3.2}
\]

\[
MSE(\hat{Y}_{dc}) = Y^2 \left\{ f_1 C_y^2 + \frac{1}{4} \left(f_3 C_x^2 + f_2 C_z^2 \right) - \left(f_3 \rho_{yx} C_y C_x + f_2 \rho_{yz} C_y C_z \right) \right\} \tag{3.3}
\]

\[
MSE(\hat{Y}_{Pe}) = Y^2 \left\{ f_1 C_y^2 + \frac{1}{4} \left(f_3 C_x^2 + f_2 C_z^2 \right) + \left(f_3 \rho_{yx} C_y C_x + f_2 \rho_{yz} C_y C_z \right) \right\} \tag{3.4}
\]

\[
MSE(\hat{Y}_{vs}) = Y^2 \left\{ f_1 C_y^2 + \frac{1}{4} \left(f_3 C_x^2 + \lambda_2 f_2 C_z^2 \right) - \left(f_3 \rho_{yx} C_y C_x + \lambda_1 f_2 \rho_{yz} C_y C_z \right) \right\} \tag{3.5}
\]

\[
MSE(\hat{Y}_{RPe}) = Y^2 \left\{ f_1 C_y^2 + \frac{2k-1}{4} \left(f_3 C_x^2 + f_2 C_z^2 \right) - \left(2k - 1 \right) \left(f_3 \rho_{yx} C_y C_x + f_2 \rho_{yz} C_y C_z \right) \right\} \tag{3.6}
\]

Also, the minimum attainable MSE of \(\hat{Y}_{VS}\) and \(\hat{Y}_{RPe}\) are given, respectively, by

\[
MSE(\hat{Y}_{YS})_{\text{min}} = Y^2 \left\{ f_1 C_y^2 + \frac{1}{4} f_3 \left(C_x^2 - 4 \rho_{yx} C_y C_x \right) - f_2 \rho_{yz}^2 C_y^2 \right\} \tag{3.7}
\]

\[
MSE(\hat{Y}_{RPe})_{\text{min}} = Y^2 \left\{ f_1 C_y^2 - \frac{\left(f_3 \rho_{yx} C_y C_x + f_2 \rho_{yz} C_y C_z \right)^2}{f_3 C_x^2 + f_2 C_z^2} \right\} \tag{3.8}
\]

4. Efficiency Comparisons

The variance of the usual unbiased estimator \(\overline{Y}\) for the population mean \(Y\) in simple random sampling without replacement (SRSWOR) is

\[
V(\overline{Y}) = f_1 S_y^2 = f_1 \overline{Y}^2 C_y^2 \tag{4.1}
\]
Also, the MSE of the chain ratio estimator $\bar{Y}^{(C)}_R$ in (1.1) is given by

$$MSE\left\{\bar{Y}^{(C)}_R\right\} = \bar{Y}^2 \left(f_1 C^2_y + f_2 C^2_x + f_2 C^2_z - 2 f_3 \rho_{yx} C_y C_x - 2 f_2 \rho_{yz} C_y C_z \right)$$ \hspace{1cm} (4.2)$$

For making efficiency comparisons of the class T with the existing estimators, we have from (2.7), (3.1) to (3.6), (4.1) and (4.2),

(i) $MSE(T) < V(\bar{Y})$ if

$$C_y > \frac{1}{4} \left[\frac{(2k - 1)(f_3 C^2_x + \lambda^2 f_2 C^2_z)}{f_3 \rho_{yx} C_x + \lambda f_2 \rho_{yz} C_z} \right]$$ \hspace{1cm} (4.3)$$

(ii) $MSE(T) < MSE\left\{\bar{Y}^{(C)}_R\right\}$ if

$$C_y < \frac{1}{4} \left[\frac{(2k + 1)(3 - 2k) f_3 C^2_x - \left\{ (2k - 1)^2 \lambda^2 - 4 \right\} f_2 C^2_z}{(3 - 2k) f_3 \rho_{yx} C_x - \left\{ (2k - 1)^2 \lambda - 2 \right\} f_2 \rho_{yz} C_z} \right]$$ \hspace{1cm} (4.4)$$

(iii) $MSE(T) < MSE\left\{\hat{Y}_{ReMd}\right\}$ if

$$C_y < \frac{1}{4} \left[\frac{4k(1 - k) f_3 C^2_x - (2k - 1)^2 \lambda^2 f_2 C^2_z}{2(1 - k) f_3 \rho_{yx} C_x - (2k - 1) \lambda f_2 \rho_{yz} C_z} \right]$$ \hspace{1cm} (4.5)$$

(iv) $MSE(T) < MSE\left\{\hat{Y}_{PeMd}\right\}$ if

$$C_y > -\frac{1}{4} \left[\frac{4k(1 - k) f_3 C^2_x - (2k - 1)^2 \lambda^2 f_2 C^2_z}{2k f_3 \rho_{yx} C_x + (2k - 1) \lambda f_2 \rho_{yz} C_z} \right]$$ \hspace{1cm} (4.6)$$

(v) $MSE(T) < MSE\left\{\hat{Y}_{Re}\right\}$ if

$$C_y < \frac{1}{4} \left[\frac{4k(1 - k) f_3 C^2_x - \left\{ (2k - 1)^2 \lambda^2 - 1 \right\} f_2 C^2_z}{2(1 - k) f_3 \rho_{yx} C_x - \left\{ (2k - 1) \lambda - 1 \right\} f_2 \rho_{yz} C_z} \right]$$ \hspace{1cm} (4.7)$$
(vi) \(\text{MSE}(T) < \text{MSE}\left(\hat{Y}_{pe}^{dc}\right) \) if
\[
C_y > -\frac{1}{4} \left[4k(1-k) \lambda_3^2 C_x^2 - \left\{ (2k-1)^2 \lambda_3^2 - 1 \right\} f_2 C_z^2 \right] \frac{1}{2k} \left[\frac{f_3 C_x^2 + \lambda_3^2 f_2 C_z^2}{f_3 \rho_{yx} C_x + \lambda_3 f_2 \rho_{yz} C_z} \right] \tag{4.8}
\]

(vii) \(\text{MSE}(T) < \text{MSE}\left(\hat{Y}_{ys}\right) \) if
\[
C_y < \frac{k}{2} \left[2f_3 C_x^2 + \lambda_3^2 f_2 C_z^2 \right] \frac{1}{f_3 \rho_{yx} C_x + \lambda_3 f_2 \rho_{yz} C_z} \tag{4.9}
\]

(viii) \(\text{MSE}(T) < \text{MSE}\left(\bar{Y}_{Rpe}^{dc}\right) \) if
\[
C_y > \frac{1}{4} \left[(2k-1)(\lambda_3 + 1) f_2 C_z^2 \right] \frac{1}{f_2 \rho_{yz} C_z} \tag{4.10}
\]

5. **Empirical Study**

To examine the merits of the proposed class \(T \), we have considered four natural population data sets and the percentage relative efficiencies (PREs) are obtained for various suggested estimators of \(\bar{Y} \) with respect to the usual unbiased estimator \(\bar{Y} \). The findings are presented in Table 2. The description of the populations and the required values of the various parameters are given below:

Population I - [Source: Anderson (1958)]
- Y: Head length of second son
- X: Head length of first son
- Z: Head breadth of first son
- \(N = 25, n' = 10, n = 7, \bar{Y} = 183.84, \bar{X} = 185.72, \bar{Z} = 151.12, \rho_{yx} = 0.7108, \rho_{yz} = 0.6932, \rho_{xz} = 0.7346, C_y = 0.0546, C_x = 0.0526, C_z = 0.0488 \)

Population II - [Source: Cochran (1977)]
- Y: Number of ‘placebo’ children
- X: Number of paralytic polio cases in the ‘placebo’ group
- Z: Number of paralytic polio cases in the ‘not inoculated’ group
- \(N = 34, n' = 15, n = 10, \bar{Y} = 4.92, \bar{X} = 2.59, \bar{Z} = 2.91, \rho_{yx} = 0.7326, \rho_{yz} = 0.6430, \rho_{xz} = 0.6837, C_y^2 = 1.0248, C_x^2 = 1.5175, C_z^2 = 1.1492 \)
Population III - [Source: Murthy (1967)]

Y: Area under wheat in 1964
X: Area under wheat in 1963
Z: Cultivated area in 1961

N = 34, \(n' = 10, n = 7\), \(\bar{Y} = 199.44, \bar{X} = 208.89, \bar{Z} = 747.59\),
\(\rho_{yx} = 0.9801, \rho_{yz} = 0.9043, \rho_{xz} = 0.9097, C_x^2 = 0.5191, C_z^2 = 0.3527\)

Population IV - [Source: Sukhatme and Chand (1977)]

Y: Apple trees of bearing age in 1964
X: Bushels of apples harvested in 1964
Z: Bushels of apples harvested in 1959

N = 200, \(n' = 30, n = 20\), \(\bar{Y} = 1031.82, \bar{X} = 2934.58, \bar{Z} = 3651.49\),
\(\rho_{yx} = 0.93, \rho_{yz} = 0.77, \rho_{xz} = 0.84, C_x^2 = 4.02504, C_z^2 = 2.09379\)

6. Conclusion

It is observed from Table 2 that, for all the population data sets, the PRE of the proposed class \(T\) is greater than the usual unbiased estimator \(\bar{Y}\) and the chain ratio estimator \(\bar{Y}_{R}^{(C)}\). Also, the members of the class \(T\), that have been considered in Section 3 and are listed in Table 2, does not attain the optimum values of the PRE in all the data sets except for the Vishwakarma and Kumar (2014) estimator \(\bar{Y}_{RPe}^{dc}\) in populations I and II, in which case the PRE is almost optimum. Therefore, the proposed class \(T\) is more appropriate for estimating the population mean \(\bar{Y}\) of the study variate \(Y\). Hence, the use of the proposed class \(T\) should be preferred over other estimators.
Table 2: Percentage Relative Efficiencies (PREs) of Different Estimators of \hat{Y} with Respect to \bar{Y}

<table>
<thead>
<tr>
<th>Estimators</th>
<th>Population I</th>
<th>Population II</th>
<th>Population III</th>
<th>Population IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{Y}</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\hat{Y}_R^{(C)}$</td>
<td>178.82</td>
<td>136.91</td>
<td>730.81</td>
<td>279.93</td>
</tr>
<tr>
<td>\hat{Y}_{ReMd}</td>
<td>123.25</td>
<td>132.66</td>
<td>136.57</td>
<td>140.16</td>
</tr>
<tr>
<td>\hat{Y}_{PeMd}</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>\hat{Y}_{dc}^{Re}</td>
<td>176.54</td>
<td>184.36</td>
<td>259.55</td>
<td>247.82</td>
</tr>
<tr>
<td>\hat{Y}_{dc}^{Pe}</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>\hat{Y}_{YS}</td>
<td>188.31</td>
<td>186.70</td>
<td>447.61</td>
<td>293.97</td>
</tr>
<tr>
<td>\hat{Y}_{dc}^{RPe}</td>
<td>196.28</td>
<td>189.27</td>
<td>763.30</td>
<td>322.95</td>
</tr>
<tr>
<td>\bar{T}</td>
<td>196.39</td>
<td>189.27</td>
<td>779.54</td>
<td>326.41</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

The authors are thankful to the editor Professor Ernie B. Barrios and the learned referee for their valuable comments and suggestions towards the improvement of the paper.

REFERENCES

CHAND, L., 1975, Some ratio type estimators based on two or more auxiliary variables, Ph.D. dissertation, Iowa State University, Ames, Iowa (USA).

