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Abstract

This paper discusses the folding procedure for the peaks-over-
thresholds (POT) models and their applications in market risk
measurement, namely the value-at-risk (VaR) and the expected
shortfall (ES). Folding is defined as a procedure in which when data
fall below a certain threshold value, a transformation formula will
move the data points above the threshold. First, an initial fitting
with the generalized Pareto distribution (GPD) over a temporary
threshold is done. Second, from the inifially-fitted GPD estimates
and a newly-selected threshold, a folding fransformation moves
the data points lower to the new threshold of higher values. Third,
the data points higher than the new threshold are fit to the GPD
for inference and risk estimation. The risk measures from the folded
GPD approach are compared with the ARMA-GARCH financial
econometric and the unfolded POT approach in terms of their
performance in real financial time series data such as the stock
indices and foreign currencies. The benefit of folding in the POT is
that it lowers estimates of standard errors for the GPD parameters
given that an appropriate threshold has been selected. These
would indicate more accurate GPD parameter estimates that lead
fo better VaR and ES estimates. The real data application results
show that the VaR and ES from the folded POT methodology have
less exceedances. Loss calculations indicate that those folded
POT might mean higher capital adequacy - the conservatively
set VaR and ES would cushion from exireme losses incurred from
exceedance events.

Keywords: Value-at-Risk, Extreme Value Theory, Financial Risk
Management

1. Introduction

Financial institutions bear risks in their interaction with financial markets
because of the uncertainty in the levels of financial returns in these activities.
This kind of risk borne from transacting with the financial markets is defined as
market risk. Financial institutions engage in activities in the financial markets, so
they can accumulate assets that they may use to provide services to the public.
However, the quality of service and the lifetime of financial institutions depend on
the returns of financial assets, of which sudden losses in value of their investments
might lead to closure. Thus regulators of financial institutions, such as the Bangko
Sentral ng Pilipinas (BSP) for the Philippines, are setting up standards for capital
adequacy with respect to the risk that these institutions are exposed. One of the
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approaches that BSP opens to institutions are the internal models approach, in
which banks create risk models within their institutions that measure their levels
of exposure, provided that these models meet standards of viability in forecasting
risk [5].

Because of this, methodologies for estimating risk have flourished. Regulators
propose the use of VaR [21] in the estimation of their risk capital. However, due to
noncoherence of the value-at-risk, a coherent function of'it, called ES [1], has been
used as a risk measure. To compute both VaR and ES, thorough understanding of
statistical properties of financial time series is necessary, so called stylized facts
[24, 27]. Financial time series are non-stationary, thus the returns in holding an
asset are used. The returns have nonnormal features of thick tails and skewness.
Variance of returns have been confirmed to be conditionally dynamic in time.

A family of models that target thick tails are POT models of extreme value
statistics which uses the GPD [4, 10, 13, 25]. The procedure involves only using
returns data that have loss exceeding a threshold quantity. They have been used
in modeling financial time series aimed in risk measurement [10, 24, 26, 27].
However, the problem with POT modeling is the data deletion of any value not
filtered through the threshold. This introduces a high data requirement for using
POT and the loss of information that can improve risk estimation. However, a
remedy has been introduced in which unfiltered data through the threshold
are folded above the threshold to be used for estimation of parameters and tail
quantiles [18]. From this development, the paper devises a means of estimating
VaR and ES based on the folded POT model.

The discussion flow of the paper is outlined as follows: The second section
of the paper discusses the background literature on financial time series, mean-
variance modeling, the POT approach, and the folding methodology. It also
includes definitions of risk measures and the methodology of risk performance
evaluation using exceedance tests and loss functions. The third section discusses
the devised methodology of risk modeling with folding and mean-variance
specifications in POT approach. Real data applications are also discussed, in
which the methodology is compared with two other models and are fit into five
financial time series. Three stock indices and two currency rates are used as
real data. Results of application to real data are discussed in the fourth section.
Summary statistics, model estimates, and risk performance are outlined. Finally,
the paper is summarized and concludes the viability of the proposed model in the
fifth section.

2. Background Literature

2.1. Stylized Facts of Financial Time Series

In the statistical analysis of financial time series data, we transform the price
series of a financial asset to its returns [27]. For example, if the price of a zero-
dividend financial instrument at time # is denoted by P, fort=1,2,...,T,then
the percentage-change return of holding a financial instrument fromz¢,  tot
is equal to
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P — P .
rtcu-,.,-enhpchange — current initial X 100(% (1)

tinitial

Often, return series are computed between adjacent periods, so the formula
simplifies to:
P — P_
't pchange = ool x 100% (2)
F t—1

Another formula for returns often used in statistical modeling of financial time
series would be the difference of natural logarithms of adjacent prices, or log-
returns:

ry = [log Py — log P; 1] x 100% (3)

This formula is used in this paper for statistical modeling because it restricts
the prices of financial instruments to positive values.

Financial time series data do not exhibit the properties that are commonly
assumed in statistical modelling and inference. The properties are: (1) non-
normality of distribution of returns; and (2) volatility clustering or time-varying
variance [24, 27].

Non-normality of returns may be broken down to two characteristics [16,
23]: (1) financial returns distributions tend to have thicker tails than the normal
distribution, which means higher or positively infinite kurtosis, describing returns
as leptokurtic; and (2) negative skewness or skewed in which tails are longer in the
side of negative values. Having thicker tails than the normal distribution implies
that the probabilities of observing values in the tails are higher than what the
normal distribution can describe. Negative skewness in combination with thick
tails means that for financial returns, the very large losses are more frequently
observed than what would be expected from values generated based on the normal
distribution. So, to assume normality when modeling financial returns would be
invalid and would not be able to account the observed frequency of large losses.

Volatility clustering is the phenomenon in which large fluctuations in returns
values in the immediate past values are followed by large fluctuations in more
recent periods and small fluctuations are followed by small fluctuations. The
changing sizes of fluctuations in time mean that variance conditionally changes
based on the information available from the immediate past values of the cur-
rent period. This kind of behavior is modeled by the autoregressive conditional
heteroscedasticity (ARCH) specifications by Engle [15] and is extended by
Bollerslev [7] through the Generalized ARCH (GARCH) models and generalized
further of increasing complexity.
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2.2. ARMA-GARCH Specification

The GARCH family of models [7] describe the property of conditional
variances of time series data. To start, let 7, log-returns series as defined by
equation 3 for time =1, 2, ..., T. The GARCH(p,q) equation specification is
defined as:

T =t + Uy (4)
uy =+ hieg, € ~ WhiteNoise(0,1) (5)
p q
ht =ag + Z (L,;U?ii + Z ;'5] ht—j (6)
i=1 j=1

Equation 4 describes the data-generating process of , with the term p, = E
[7 |/ _,] as the mean specification, which the expected value of returns given the
I_, = information available at time ¢ — 1. Common mean specifications may be
time series regression models [14] or Box-Jenkins autoregressive moving average
(ARMA) [8] models; the second model is used for the paper. As a brief discussion

of the Box-Jenkins ARMA (p/, ¢/) model, the equation is presented below:

' 7
Tt — W+ Z GiTe—q + Z Hjil-t,j -+ ug (7)
i=1 j=1

The first summation set describes the autoregressive component, which is the
dependence of the current value of 7, to its immediate past values r,_ as weighted
by the corresponding parameter ¢@. The second summation set describes the
moving average components, which is the dependence of current value of 7, with
past forecasting errors u,_. with weight described by parameter 6. The intercept
of the model is the parameter ®. Possible values of p/ and ¢/ are any nonnegative
integers. Box and Jenkins [8] provides system of model fitting procedures to
follow to get an appropriate fitting ARMA model. For this paper, the auto.arima
procedure in R [20] is implemented which selected the orders of the ARMA(p/,
¢/) with the smallest Akaike information criterion (AIC) [2] value:

AIC=—-21log L +2k 8)
where k= p/ + ¢/ + 1 if an intercept o is included and k= p/ + ¢/ if otherwise.

The interaction of the conditional variance 4, = var[r |/,_,] and the white noise
process € is described in equation 5. A common error distribution for GARCH
estimation is the normal distribution with a correction on the standard errors of the
estimators to account for heteroskedasticity, called quasi-maximum likeli- hood
estimation [28]. This does not drastically alter the estimated parameters, but it
does affect significance testing for the parameters.
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Equation 6 is the GARCH equation [7], which shows the dependence of the
conditional variance /, to immediate past squared raw errors u*,_, with the speed
of adjustment to past errors described by a, and to immediate past variance values
h,_ w1th weights described by parameters |3 This term facilitates time-varying
Varlance and the observed occurrence of volatlhty clustering. The quick increases
in fluctuations are emulated by large values of o,, while the lingering duration of
variances remaining high are emulated by large values of [3 The possible values
of the model with orders p and q are any nonnegative mteger The appropriate
GARCH(p,q) order may be selected by iterative use of formal statistical tests
such as the Ljung-Box white noise test [22] on squared residuals evaluated on
sufficiently large number of lags.

2.3. Peaks-Over-Thresholds (POT) Approach

With respect to thicker tails in return distributions and the focus on losses of
holding assets in financial activities, a common technique in risk measurement and
estimation is to make inferences and forecasts based on modeling tail behavior.
To describe the tails, a threshold value should be described first which segregates
the tail values appropriate for fitting and the rest of the data discarded from the
statistical modeling approach; thus it is called POT approach in extreme value
theory (EVT) [10, 13].

A distribution to fit for the POT approach is the GPD [4, 25]. The notation
for a random variable X following the GPD distribution is X ~ GPD(9, o, &) and
the density fx, the distribution F, the quantile function F'y- ! and the mean of the
distribution E(X) are described below [10, 13]:

Fx(x:8,0,€) :1—( )_E >0 1+4627%50 (9
a
Fy (236, 0,€) = (1+§I*5)_g_ o ese 1+¢57%50 (o)
a
wt—1
Fil(w;d,0,6) =6+0 , 0<u<1 (11)
E(X|5,0,€) :6+1L_£, if €<1 (12

Note that the above equations assume a right-side tail. For the returns
distribution of financial assets, a negative transformation can be done in data
preprocessing for density fitting. Negative transformation of returns may be called
the loss distribution of holding the financial asset.

The scale parameter of the GPD is o. Different values of the parameter,
holding other parameters fixed, simply stretch or compress the density function
without affecting its general shape or location. The parameter & is the shape
parameter, which can dictate whether the distribution will have a finite or infinite
right endpoint. If §> 0, then x > 0 for equations 9 and 10. It also describes whether
the mean of the GPD in equation 12 is finite when & < 1 or infinite otherwise.
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The parameter 6 is the threshold parameter. This is not directly estimated
by any statistical method using the data when using the POT approach. This is
selected by the user through threshold selection techniques. In this paper, the Hill
estimator plot [13, 19] is used for the selection of the appropriate threshold. The
Hill estimator for the GPD provides an initial estimate on the shape parameter &.
Let X, X,, ..., X be arandom sample from the GPD(& o, &). Let X 0= the ith
smallest Value in the random sample. The Hill estimator fH, 1Lk 18

1
sH'LH k= ( ZIO X(n i) lOg (X(nk))) (1‘3)

_ With the choice of k= k(n) as a function of n with k() — 0, the Hill estimator
CHill,k —> & as sample size n —> oo. The Hill estimator plot is a 2-dimensional
plot such that the different choices for & are on the x-axis while the different values
of erH k are on the y-axis. This implies that an approprlate threshold would be

5 X ) such that £* is small and the estimated §H1H & value will be a constant
from k k* to k=0, or the edge of the plot.

When an appropriate threshold has been selected, estimation of the GPD
parameters ¢ and £ may be done. This paper used maximum likelihood estimation

(MLE) [10, 13]. Let (X RTINS, SR ¢ ) be the set of data from the original
data (X, X,, ..., X)) of sample size n w1th wh1ch X >X, ., and let 5 =X,y
The maximum likelihood estimators of (o, &) are:
k—1
(Garr 5 €ML5) = argmaleocT [fx (T(n—i); 28,0, )] (14)

o>0,6eR %

Thus, the POT procedure is as fOllOWS'

Step 1: Select the approach threshold 6 X, using the Hill plot and equation 13.

Step 2: In the sample (X, X, ... , X)), extract (anklﬂ), X(nfkuz),. e X(n)) and get the
maximum likelihood estimates of (o, &) using the set-up of equation 14

Step 3: From the results of step 2, one can perform inferences or estimations of
extreme quantiles. Note the GPD quantiles are different from POT by a

correction based on the deletion of data in step 1:

Ff}ﬂ,OT(u:dq 5,6)=06+¢d

2.4. Folding in Extreme Value Statistics

A problem with POT approach is it discards data until a sample size k* remains
even after having a large initial sample size n. This means that a lot of information
that can be extracted from the initial sample is discarded and that a large sample
size n is necessary to assure that a large truncated sample &* would remain after

filtering through a threshold X ... Also, since k" is a smaller sample size, it may

98 | The Philippine Statistician Vol. 67, No. 1 & 2 (2018)



result to higher standard errors of ML estimates, since ML estimates of basic
parameters of distributions tend to be negative power functions of sample size [9].
However, a means of remedy on the problem of sample size is folding
methodology in EVT [18], based on perfect sampling techniques used in
simulation studies [11] and the idea of connecting the two tails of a distribution.

The folding methodology is outlined below:

Step 1: Select a preliminary threshold & = X, 4y, and estimate (o, §) using

n—kFp)
O3 dfML,é' ) from
-~ kp—1 ~
(5ML13.£ML~3) = arg max Z log[fx (x@_q); 9,0, &)] (16)
. o>0,L€R i—0

Step 2: Select a second threshold 5= X,

where § > & and calculate & s
5ML,5+§ML,,; (5 - 5)

—k*)

Step 3: Perform the folding transformation on all the order statistics of the original
sample data of size n as shown below with the use of equation 11:

. Fxllu=1-£6=0,0=0p56=E8y,;5) ifi<k an
@ X0 ifi > k"

), estimate the GPD parameters

Step 4: From the folded sample (X(I)F X(z)f . X(n)!
(o, &) using (&FAJL,SS fAFML,,a) using

GCrarr.3 Epam.s) = argmax  loglf5(xe-n;d, 0, )] (18)
0>0,eR =0

Step 5: Estimate the POT extreme quantiles with correction based on data deletion:

(Lu)*éFML.S —1

F)?,IFPOT(M 6*&FA1L,5‘5FA4L,$) = §+&FML,5 M O<u<l
5FML,$
(19)
Based on the simulation studies [18], the quantile F ! has lower

xFpror N
bias and root mean-square error in estimating the true extreme quantiles on

scenarios involving the Burr and the standard Frechet distribution, which are
heavy- tailed distributions. It also showed that the ML estimators of equation
18 are asymptotically normal. These properties on extreme quantiles are vital in
estimating a financial risk using the POT approach.

2.5. Risk Measurement

Since market risks are incurred by financial institutions in their transactions
with different asset markets, these activities are placed in check by regulators.
Institutions keep track of the risks that they incurred by measuring it. There are
two risk formulas used in monitoring: (1) VaR [21] and (2) (ES) [1].
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Value-at-risk /" aR _ at time ¢ and probability 1— a is the minimum loss of
holding an asset, given a probability a that such loss may be exceeded [21]. In
terms of statistical methodology, this is the upper a quantile of a loss distribution.
In equation form, with L, = —r, as the loss at time ¢

VaR,

—a *

PIL,>VaR, ]=a. (20)

Given that the VaR is exceeded, the expected loss is called the expected
shortfall [1]. This is achieved by solving the mean at the set of values of L, where
L> VaR,,H; The definition formula for ES is:

ES,, =E[L|L,>VaR, ] 21

t1

ES risk formulas are said to comply [1] with the definition of coherent risk
measures [3], which are: (1) monotonous, which means a risk measure should
be always negative if computed using the return distribution, (2) sub-additive,
which means the risk of a portfolio, computed using the return distribution, should
be less than the sum of the risk of its components, (3) positively homogeneous,
which is if one buys more of an asset by a multiplier / > 0, the risk also increases
by a factor of 4, and (4) translation equivariant, which is when a constant a is
added to a portfolio, the risk accounts for the addition. VaR is not sub-additive,
thus it is not coherent. ES is coherent as it has been recommended over VaR.

Given special distributions, the formula for the VaR and ES are simplified. For
the loss L, having a normal distribution with forecasted mean i, and forecasted
conditional variance %, the standard normal distribution function ®(z), and
standard normal density ¢(z), the VaR and ES formulas will be [24]:

VaRYM et =y 4+ 4/ he®7H(1 — a) (22)
—p[d (1 —
psernat —gi 1/, 0= )

Under the POT model for the loss distribution, the VaR, based on equation
15, and ES are shown below:

V‘LR{D—OE :F)Z,IPOT(I - 5: M5 éML,S) (24)

s pPOT A IS |
VaR{ST  opp s — S 60

ESPOl = (25)

1- 5ML,$ 1- 5ML,5

As the POT models are static in the time series sense without adapting to
the changing conditions of time series data, Suaiso and Mapa [26] proposed
an ARMA(p,q)-GARCH(p, ¢)-POT model. The Suaiso-Mapa methodology
involves a two-step procedure:

Step 1: Fit an ARMA(p,q)-GARCH(p', ¢’) model on the return series », and extract
the standardized residuals e; of the model.
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Step 2: Perform the peak-over-thresholds procedure on the standardized residuals

e, and extract the estimated parameters of the GPD (4, & MLS" ¢ ML.S)

The VaR and ES for the Suaiso-Mapa method for the loss distribution is
shown below:

VaR{EOT =, + V B h Filpoq’ -39, OrMLs éML,S) (26)
AGPOT F)? or(l— ;0,6 8uns)  Omrps— Surns®
ESt Ad—a =t + + 2
1—Earp g 1=&yrs
(27)

The Suaiso-Mapa methodology has been assessed to be more dynamic with
smaller frequency of VaR exceedances. The proposed procedure is based on the
Suaiso-Mapa method. The two methodologies and GARCH-Normal VaRs with
their corresponding ES formulas will be assessed and compared in terms of their
performance using evaluation approaches to risk measures.

2.6. Evaluation of Risk Measurements

Because of the myriad of risk estimation methodologies that exist in literature,
the choice of the optimal risk methodology for a specific problem is pursued and
many criteria are devised.

The first of the criteria are the Christoffersen Likelihood Tests [12], which
are the tests for unconditional coverage LR , independence LR, , and conditional
coverage LR .

Uncondmonal coverage test examines whether the V'aR | model fails at the
appropriate proportion o of exceedances; e.g., for the V'aR,  ,,, it may only fail at
most one percent of the time. Suppose that 7 is the number of exceedances from
VaR,  model. The VaR failure rate p is estlmated by p = where T is the
length of time for evaluating the VaR model. The LR , test statlstlc forH :p=a
versus the alternative H pFa 1S:

LRy, =2log (28)

Thenullhypothesisisrejectedata,, level of 51gn1ﬁcance LR > Yo =1+
It should be noted that it is possible to reject H evenif p < a which means the
VaR model performs better than expected.

The test for independence examines whether or not the exceedances in the
previous period would be followed by another exceedance. A preferred property
is that current exceedance should be independent of past exceedances. Still using
the quantities defined in the unconditional coverage test, additional inputs are
necessary.

Two parameters are assumed by this test: p, is the parameter that describes
the probability of VaR exceedance at the current period given that the previous
period did not have VaR exceedances, and p, is the probability of VaR exceedance
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at the current period given a previous period with VaR exceedance. Let T, be
the number of instances that exceedances are followed by non-exceedances, T,
be the number of instances of two consecutive exceedances, T, is the number of
non-exceedances followed by exceedances, and 7 is the number of instances of
two nonexceedances.

.From these quantitie%s, Po = TD;‘:({E,,M and p; = T1c?1}1”11 . The.LRM , test
statistics for H, - p, = p,, independent exceedances, versus the alternative /,  p,
# p, serially correlated exceedances, is

(1= 50)™ (o)™ (p1)™" (1 — )™
(1=p)T T (p)"

The null hypothesis is rejected at o, level of significance if LRy > )(isi df=1-
The test for conditional coverage is the test in which independent exceedances
still comply with desired coverage probabilities. The LR _ test statistic is simple,
as it is the sum of the two previous tests:

LRing = 2log (29)

LR _=LR +LR , (30)

The null hypothesis is rejected at o, level of significance if LR, > xisig! af=2-

The other risk evaluation that was used is the VaR-based loss function Q [17].
For each time point 7, the value of (¢) fora VaR,,  model derived from the loss
function is:

Q(t) = (= [1+exp{25[re — (—Valea o)) 7) [re = (~VaRe1 o)) (31)

The VaR-based loss function is solved on the evaluation periods of the VaR
model under consideration. It means that the data will have to be split into two
parts: (1) estimation or training periods for generating the parameters of the VaR
model, and (2) evaluation or testing periods for forecasting VaR but were not
included in the estimation of the VaR model parameters.

In analyzing the loss function, statistics of interest are the average loss and
the maximum loss values. The best case would be to observe lower loss values
and lower loss statistics.

With the different methodologies of comparing VaR model performance
discussed, the methodology of the paper is discussed in the next section.

3. Methodology

3.1. VaR and ES using GARCH-Folded EVT Procedure

In the same line of reasoning as [26], a dynamic ARMA(p,q)-GARCH(p/, q/)-
Folded POT model is devised by the paper. The proposed methodology involves
a two-step procedure:
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Step 1: Fit an ARMA(p,q)-GARCH(p', ¢’) model on the return series », and extract
the standardized residuals e, of the model.

Step 2: Perform the folded POT procedure on the standardized residuals et and
extract the estimated parameters of the GPD, (0, 6, L6 SFML, ;)

The VaR and ES of the proposed procedure for the loss distribution is shown
below:

VaR{{T O = + V f“Fi}POT(l - Q?S*‘}FML,S'éFML,é) (32)
[ Fxoor(l— @b, 6 5 6pmns)  Trmis — Crnnsd
ESAGTPOT _y o T s — FMAL,O FMLS) FMlL,aé FM:L,&
—SPmré —SFrML
(33)

The performance of the VaR equations 22, 26, and 32 and ES equations 23,
27, and 33 are assessed on real data with evaluation measures as described in
equations 28 to 31.

3.2. Real Data Application

The ARMA-GARCH-Normal models of equations 22 and 23, the Suaiso-
Mapa methodology as shown in equations 26 and 27, and the proposed ARMA-
GARCH-Folded EVT equations 32 and 33 were fitted and evaluated on stock
indices and exchange rates data. The VaR and ES were solved with 1 o = 0.99.
Three daily stock indices data were used: (1) the Philippine Stock Exchange Index
(PSEI), (2) the Dow Jones Industrial Average (DJIA), and (3) the S&P 500 Index
(SNP). The daily stock indices data were gathered from Yahoo Finance (https://
finance.yahoo.com/). Two daily currency exchange rates data were used: (1) the
Philippine Peso-US Dollar Exchange Rate (PHPUSD), and (2) the Philippine
Peso-Euro Exchange Rate (PHPEUR). All time series data span from 30 October
2006 to 31 July 2018. The daily currency rates data were gathered from the BSP
[6]. The log-returns as defined in equation 3 were computed for each time series
in all covered time points. Each of the stock index data series were divided to two
sets of periods: (1) the training period were all dates before 1 August 2017, and (2)
the testing or evaluation period from 1 August 2017 to 31 July 2018. The currency
rates data series were divided to two sets of periods: (1) the training period were
all dates before 24 March 2017, and (2) the testing or evaluation period from 24
March 2017 to 31 July 2018. For both types of data, this ensured that there are
251 time periods for the testing interval. There are many skips in exchange rate
data because of international date matching for cross rates data. Missing rates
or index values in these series are due to holidays, and thus were ignored. The
ARMA models were selected using the auto.arima function in R [20]. All models
have GARCH(1,1) variance specifications. For the POT models, the Hill plots
were used for threshold selection for each series. All stated 99 percent VaR and 99
percent ES models were tested using equations 28 to 30. The arithmetic averages,
quartiles, and maximum VaR-based loss values as stated in equation 31 were
compared among the different VaR and ES models.

Peter Julian Cayton | 103



4. Results and Discussion

4.1. Summary Statistics of Financial Time Series

The level and return plots of the five time series data are shown below. It is
noted that the volatility in the stock indices were highest during the 2008-2009
Global Financial Crisis which can be found in the first few periods in the return
plots. The currency rates series are relatively less volatile with the ranges of the
returns not necessarily going beyond double digits in their daily fluctuations.

Figure 1: Level and Return Plots for PSEI, 30 October 2006 - 31 July 2017
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Figure 2: Level and Return Plots for DJIA, 30 October 2006 - 31 July 2017
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Figure 3: Level and Return Plots for SNP, 30 October 2006 - 31 July 2017
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Figure 4: Level and Return Plots for PHPUSD, 30 October 2006 - 23 March 2017
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Figure 5: Level and Return Plots for PHPEUR, 30 October 2006 - 23 March 2017
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Table 1 below shows the basic statistics of the returns of time series under
consideration. For the stocks data, they tend to be negatively skewed with high
kurtosis values. For the currency returns, skewness is positive and kurtosis, though
higher than 3, indicate that their tails are not as heavy as the stock indices datasets.

Table 1: Summary Statistics of Returns Data on the Training Periods

PSEL DJIA SNP | PHPUSD | PHPEUR
Minimum ~13.08869 8.20051 9.46051 | -1.665030 | -2.73432
First Quartile -0.57239 -0.40507 -0.41481 | -0.21326 | -0.38962
Median 0.07341 0.04840 0.05783 |  0.00000 0.00702
Third Quartile 0.72602 0.52615 0.56383 |  0.18867 0.39492
Maximum 9.36528 10.50835 10.95720 1.36768 3.64271
Mean 0.03940 0.02207 0.02166 | -0.00692 0.00534
Standard Deviation 1.20702 1.17368 1.27831 0.33315 0.67650
Skewness -0.81395 -0.10327 -0.34244 | 0.01426 0.23038
Kurtosis 11.92516 13.54823 13.65691 3.97883 4.94880
Jarque-Bera test 8909.80664 | 12540.95634 | 12857.87336 | 85.14304 | 356.06591
JB p-value 0.00000 0.00000 0.00000 |  0.00000 0.00000

[ Sample [ 2598 | 2706 | 2706 | 2131 | 2131 ]|
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4.2. Model Fitting

The results of fitting an ARMA-GARCH model for each of the five time
series data are shown below in table 2. The ARMA order is selected by the auto.
arima function based on AIC, so some results in the lags may not be significantly
different from zero. The GARCH model parameters are all significant as indicated
by the Standard Errors (SEs), which indicate nonconstant heteroskedasticity
which is typical of financial time series.

Table 2: ARMA-GARCH Parameter Estimates of Returns on Training Periods

PSEI DJIA SNP PHPUSD PHPEUR
ARMA order p 2 2 0 1 2
MA order q 2 4 2 0 2
b1 0.98241 0.40976 — 0.09643 0.81165
robust se 0.27858 0.13080 — 0.02117 0.17190
o) -0.36791 -0.85413 — — -0.34700
robust se 0.21358 0.09159 - - 0.15866
61 -0.88085 -0.46645 -0.06712 — -0.90375
robust se 0.29011 0.13160 0.01897 - 0.16302
6o 0.26673 0.88664 -0.00663 — 0.45178
robust se 0.21388 0.09038 0.02236 - 0.14723
6a — | -0.02804 — — —
robust se — 0.02445 — - —
04 — | -0.01302 — — —
robust se — 0.02767 — — —
ap 0.05726 0.02324 0.02474 0.00240 0.00238
robust se 0.02470 0.00542 0.00633 0.00092 0.00123
aq 0.14171 0.12295 0.11661 0.10326 0.04166
robust se 0.02496 0.01925 0.01917 0.01903 0.00488
B 0.82914 0.85607 0.86370 0.87573 0.95338
robust se 0.03221 0.01906 0.01893 0.02447 0.00372

Figure 6 below shows the Hill plot for the standardized residuals of the
ARMA- GARCH model for PSEI. The blue line is marked on & = 0.32. Note that
since & is a constant, it should stay constant, or in the case of the graph, lie on the
horizontal line starting from the right end of the graph such as shown in the blue
line. The lower horizontal axis indicates the kth largest value in the sample X
that was used as the threshold to solve for Z'i gy 1. The upper horizontal axis
simply shows the numerical threshold value each X, Basedon the figure below,
an appropriate threshold would be &* < 190. The threshold chosen as appropriate
was k* = 150 thus § = 1.51093%. For folding, the initial threshold was selected at
k=190 which is 5 =1.36129%. It is noted that these chosen values are slightly
subjective within the choice £*< 190 but in the literature of threshold choice for
POT models, there is no definitive means to choose.
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Figure 6: Hill Plots for PSEl ARMA-GARCH Standardized Residuals

Threshold

106 111 117 121 126 131 138 146 153 160 173 185 201 222 252 320

04

03

Xi (Cl,p=095)

02

01

The other Hill plots for standardized residuals follow the same explanation for
threshold choice, except for standardized residuals of the ARMA-GARCH model
for PHPUSD as shown in figure 7, in which some level of discretion has been
exercised. The blue line is drawn at £ = 0.21 but another purple line was drawn at
£=0.16. To base the choice on £ = 0.16 is suboptimal as too few observations will
be the basis for the parameter estimates of the folding transformation, which will
depend on the initial threshold choice. Researcher discretion has been exercised to
ignore the & values from £ < 30. This meant that £~ < 150 would be appropriate.
The threshold at &* = 120 was chosen, indicating that § = 1.54566%

Figure 7: Hill Plots for PHPUSD ARMA-GARCH Standardized Residuals

Threshold

110 113 117 121 124 127 134 138 143 151 157 164 176 188 199 242
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0.05
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300 283 266 249 232 215 198 181 164 147 130 113 98 85 72 59 46 33 20

Order Statistics
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For the sake of brevity, the other Hill plots will be displayed below without
further explanation as they will follow the same form as it is done in the PSEI
data. The choice of appropriate threshold and pre-folding threshold are shown in
table 3.

Figure 8: Hill Plots for DJIA ARMA-GARCH Standardized Residuals

Threshold

116 121 125 129 137 142 149 158 170 179 191 206 218 237 262 3.08

04
!
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Xi (Cl, p =0.95)
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Figure 9: Hill Plots for SNP ARMA-GARCH Standardized Residuals

Threshold

114 120 125 130 138 145 150 157 168 178 196 207 226 241 271 316

04 05
1
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Figure 10: Hill Plots for PHPEUR ARMA-GARCH Standardized Residuals

Threshold
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Order Statistics

Table 3: Threshold Choices for ARMA-GARCH Standardized Residuals

PSEI DJIA SNP PHPUSD PHPEUR
kr 190 90 110 150 100
5 1.36129% 2.07031% 1.96025% 1.43141% 1.65588%
k™ 150 70 85 120 50
) 1.51093% 2.23209% 2.11824% 1.54566% 2.05235%

Table 4 below shows the MLE results for the EVT models for pre-fold, post-
fold, and unfolded procedures. In the unfolded results, all & estimates indicate
that & not significantly different from zero as it can be checked by the SEs. For
the post-fold results, only PSEI and DJIA have ¢ estimates indicating significant
nonzero & values. This means that PSEI and DJIA have heavy tails while the three
other series have exponential tails, which are similar to the tails from the normal
distribution.
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Table 4: EVT Results for Pre-Fold, Post-Fold, and Unfolded Procedures

PSEI DIJIA SNP | PHPUSD | PHPEUR
Pre-fold
5ML,3 0.13412 | 0.08723 | 0.04394 -0.00233 0.04190
se 0.08228 | 0.11460 | 0.09954 0.08146 0.10419
&ML,S 0.62002 | 0.54441 | 0.61244 0.42514 0.48435
se 0.06774 | 0.08462 | 0.08438 0.04903 0.06992
Post-fold
EFML,S 0.12979 | 0.08291 | 0.03853 -0.00552 0.03984
se 0.02217 | 0.02082 | 0.01997 0.02155 0.02253
&FML,S 0.64141 | 0.55932 | 0.62176 0.42410 0.49930
se 0.01892 | 0.01583 | 0.01723 0.01296 0.01560
Unfolded
SML,S 0.15226 | 0.13899 | 0.04616 0.06346 0.30395
se 0.09408 | 0.13614 | 0.11380 0.09708 0.18441
&ML,S 0.62241 | 0.50454 | 0.61488 0.37583 0.32001
se 0.07715 | 0.09102 | 0.09661 0.05003 0.07308

4.3. Risk Measurement Performance

The risk estimation performance of the different 99% VaR and 99% ES models
with respect to exceedances and the Christoffersen likelihood tests are shown in
table 5 below. Note that for most of the returns series, the maximum number of
exceedances that ARMA-GARCH (AG) folded POT (FPOT) has received was 1
in the PHPUSD currency rate series. Because of this, the likelihood tests cannot
be performed for the AGFPOT except in the PHPUSD series, in which, AGFPOT
is assured to meet the required coverage, have serially independent exceedances,
and conditional exceedance occur in appropriate coverage proportions. The
AGPOT model, which is the Suaiso-Mapa methodology, may have some
independence problems as the VaR in DJIA and SNP and the ES in DJIA indicate
that the exceedances are serially correlated. This means that for these series, it is
possible that past exceedances may indicate possible following exceedances. The
AG-Normal methodology consistently has higher or same exceedances than the
AGPOT, while AGPOT have higher or same exceedances than the AGFPOT.
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Table 5: Exceedances and Likelihood Tests for 99% VaR and 99% ES Models

VaR ES

PSEI DJIA SNP PHPUSD PHPEUR PSEI DJIA SNP PHPUSD PHPEUR
Exceedances
AG Normal 1 5 7 1 2 0 3 4 1 1
AGPOT 0 3 4 1 2 0 2 1 1 0
AGFPOT 0 0 0 1 0 0 0 0 1 0
IR..
AGNormal 1.189 1.937 5.460 1.189 0.113 - 0.091 0.757 1.189 1.189
p-value 0.276 0.164 0.019 ).276 0.737 — 0.763 0.384 0.276 0.276
AGPOT - 0.091 0.757 1.189 0.113 - 0.113 1.189 1.189 -
p-value — 0.763 0.384 0.276 0.737 — 0.737 0.276 0.276 —
AGFPOT - - - 1.189 - - - 1.189 -
p-value — — — 0.276 1.000 — — — 0.276 —
LRipg
AG Normal .008 3.161 1.852 0.008 0.032 - 5.433 4.115 0.008 0.008
p-value 0.929 0.075 0.174 0.929 0.857 — 0.020 0.043 0.929 0.929
AGPOT - 5.433 4115 0.008 0.032 - 7.502 0.008 0.008 -
p-value — 0.020 0.043 0.929 0.857 — 0.006 0.929 0.929 —
AGFPOT - - - 0.008 0.000 - - 0.008
p-value — — — 0.929 1.000 — — — 0.929
Ih..
AG Normal 1.197 5.098 7.312 1.197 0.145 - 5.524 4.872 1.197 1.197
p-value 0.550 0.078 0.026 0.550 0.930 — 0.063 0.088 0.550 0.550
AGPOT - 5.524 4.872 1.197 0.145 - 7.614 1.197 1.197 -
p-value — 0.063 0.088 0.550 0.930 — 0.022 0.550 0.550 —
AGFPOT - - - 1.197 - - - - 1.197 -
p-value — — 0.550 — — — — 0.550

Table 6 shows the results for the evaluation of VaR-based loss function.
Generally, AGFPOT would tend to have higher minimum, quartile, and mean
losses than the other models over all other models in all return series. However,
except for the PSEI in the VaR, the maximum loss is lowest for the AGFPOT
over the two other models. This indicates that generally, AGFPOT measures risk
generally higher than the other models, but when extreme losses are observed, the
AGFPOT is able to account compared to the other models. These other models
are less often to cover extreme losses than the AGFPOT. This indicates that the
AGFPOT is a more conservative measure of risk, asking institutions which would
use this model to have more risk capital than the other two models with the added
benefit of ensured and strengthened cushion over extreme losses than the two
models can provide.

Table 6: VaR-Based Loss Function @ for 99% VaR and 99% ES Models

VaR ES

PSEI DIIA SNP | PHPUSD | PHPEUR PSEL DJIA SNP [ PHPUSD [ PHPEUR
AG Normal
Minimum 0.179 0.026 0.286 0.035 0.320 0.247 0.184 0.145 0.120 0.068
1st Quartile 1.645 1.293 1.279 0.430 0.926 1.923 1.486 1.465 0.518 1.104
Median 2.286 1.714 1.669 0.601 1.231 2.616 1.924 1.888 0.677 1.401
3rd Quartile 2.888 2.292 2.348 0.762 1.619 3.261 2.563 2.587 0.870 1.791
Maximum 5.638 189.735 170.185 34,824 27.187 6.089 152.079 136.722 28.756 0.488
Mean 2.315 3.484 3.173 0.746 1.409 2.636 3.339 2.957 0.806 1.469
AGPOT
Minimum 0.329 0.236 0.246 0.011 0.051 1.149 0.058 0.201 0.124 0.060
1st Quartile 1.990 1.529 1.566 0.408 0.947 2.847 1.937 1.948 0.522 1.259
Median 2.710 1.968 2.007 0.580 1.250 3.634 2.424 2.466 0.680 1.549
3rd Quartile 3.370 2.623 2.725 0.73¢4 1.639 4.390 3.223 3.2190 0.875 1.939
Maximum 6.218 143.242 119.243 36.510 25.226 7.494 68.928 51.688 28.492 2.810
Mean 2.732 3.315 2.881 0.729 1.412 3.688 3.138 3.010 0.809 1.585
AGFPOT
Minimum 2.666 1.305 1.010 0.318 0.912 3.503 1.961 1.372 0.409 1.242
1st Quartile 4.462 3.073 2.942 0.693 2.084 5.646 3.578 3.386 0.780 2.401
Median 5.329 3.653 3.664 0.870 2,393 6.609 4.243 4,124 0.963 2,728
3rd Quartile 6.437 4.959 4.627 1.100 2.794 7.964 5.842 5.328 1.217 3.119
Maximum 10.304 13.790 12.196 14.267 3.811 12.453 15.792 13.733 6.903 4.209
Mean 5.514 4.385 4.149 0.950 2.435 6.849 5.105 4.752 1.023 2.763
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5. Conclusion

In the activities of financial institutions with interactions with financial
markets, such as buying and selling assets, they incur risks in abrupt changes
in the value of held assets. Since the quality of service and lifetime financial
institutions depend on the value of held assets, financial regulators have opted that
these institutions manage the risk they accumulate by preparing an appropriate
amount of risk capital. The capital is computed based on risk measures, such as
VaR and ES via the internal models approach.

However, to model for VaR and ES, an understanding of the stylized facts
of time series is important. It is generally known that financial time series data
have non-normal properties such as skewness and high kurtosis indicating thick
tails and that variance tends to vary through time. Thus, these features need to be
accounted in modeling and estimating risk.

As market risks involve extremely high losses, it is best to key in to the tails
of a distribution in determining risk, thus the POT models have been devised,
which are based on the GPD distribution of EVT. The problem of POT models
is the high sample requirement due to chosen threshold that defines the tails and
the deletion of data when found not on the tails. Data deletion results into loss of
information that are useful in the estimation of GPD parameters. Thus, folding in
POT models are used to improve estimation of the parameters to facilitate better
estimation of extreme quantiles necessary for risk measurement.

The paper outlines a method of estimating VaR and ES using AGFPOT models.
The risk measures based on the folded POT are compared to the ARMA- GARCH
Normal model and the Suaiso-Mapa methodology in terms of the performance on
exceedances and the VaR-based loss function € . On the generated statistics, the
AGFPOT model is a conservative risk model in which exceedances are observed
less often than the two other models and though the AGFPOT gives higher VaR
and ES values, it provides adequate risk capital for extreme losses compared
to large losses possible in exceedances with the two other models. The paper
shows the viability of the AGPOT model for risk estimation and measurement
for financial institutions with reduced exceedances and conservative risk capital
computation.
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