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Abstract
A commonly studied characteristic of area data is the assessment
of similarity (or absence thereof) among neighboring areal units.
However, most methodologies do not measure uncertainties which
are likely outcomes of sampling variation and do not consider
spatial autocorrelation. This paper explores the ability of Bayesian
modeling to address the said situation. It applies this modeling
technique to the voting participation stafistics in the Philippine
National and Local Elections of 2016.
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1. Introduction

Many inquiries in statistics are interested in determining heterogeneity in
some population. Dissimilarity is one such measure. It is the extent to which two or
more groups are integrated or isolated. The most popular metric is the Dissimilarity
Index. However, the Dissimilarity Index has the following inadequacies in spatial
data: (1) it does not measure uncertainties which could potentially be a result of
random sampling variation, and (2) it does not consider spatial autocorrelation
which could be present in the data.

This paper aims to detect dissimilarity in a specific spatial area data:
voter participation. In the Philippines, voter turnout is intuitively spatially
autocorrelated. There are strong bailiwicks in various corridors in Philippine
geography especially in Northern Luzon and Bicol region. There are also strong
solid votes in Panay and Negros Islands, another in Cebu and the Davao region.
Voter turnout in nearby barangays (the Philippine’s basic geopolitical unit) tend to
be similar. The same may be opined for larger units like cities and municipalities
and even up to the level of the province or region. This paper shall first present
a classical method in establishing dissimilarity. However, in consideration of
the spatial nature of voter turnout, a Bayesian model shall be used to introduce
smoothing in the presence of spatial autocorrelation.
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2. The Dissimilarity Index

Let the data be denoted by ¥ = (Y3, ..., )and N = (N, ..., Ny),
which respectively denote the number of people who voted and the number
of registered voters for each of the n areal units. Here, the areal units are the
provinces, both regular and special provinces as determined by the Commission
on Elections (COMELEC), as well as the districts in the National Capital Region.
Define voter turnout as the proportion of registered voters who actually voted.
Let P = (P, - - -, Pn) denote the true voter turnout in each areal unit. The
Dissimilarity index is given by (Lee et al, 2015)

n
_ Nilpr — pl
44 2Np(1-p)

where N =3Y}_;Nyandp are the total population of registered voters and
overall voter turnout in 2016 for the entire Philippines. The value of D lies in
the interval [0, 1], where zero conveys parity and one means full disparity (or
segregation). The unknown true proportions are typically estimated by their
sample equivalents, that is Py =Y, /N, andp = (Qj=q Vi) /Dk=1 Nk
Sampling variation is clearly present if (¥,, N,) emanates from a survey, since
they are based on a random sample in areal unit . It should be emphasized that
elections data is practically census data, which is not obtained from a survey, so
that “variation” is essentially due to measurement error. Other variation may be
alluded to misreporting, misrecording or computation as in the case of manual
tallying.

3. Bayesian Modelling

The estimator Pk is both the method of moments estimator and the maximum
likelihood estimator under the model Y, ~ Binomial(Ny, p,). However, this
model assumes that data among areal units are independent, something which
is not valid in the presence of spatial autocorrelation. To accommodate this
dependence, a Conditional Autoregressive (CAR) model will be used to model the
spatial autocorrelation in the data. In this study, the methodology proposed by Lee,
Minton and Pryce (2015) was followed. Lee, et al. proposed a global smoothing
model for spatially autocorrelated data using a binomial generalized linear mixed
model (GLMM), where the random effects are spatially autocorrelated. The full
model is given by (Lee et al, 2015):

Y, ~Binomial (N, py)

In (1 fkpk) =Po + ¢ic; 9~N(0,72Q(p,W)™")

Bo~N(0,C), C constant
t2~Inverse Gamma(a, b)

p~Uniform(0,1)
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The random effects ¢ = (@1, - - -, @n) shall account for the spatial dependence
in the data, and are represented by a CAR prior distribution. Despite the fact that
voter turnout areal data is deemed constituted by the totality of all areal units, the
randomness of spatial effects is asserted mainly due to possible inaccuracies and
unaccounted variation in the reported turnout, and to some extent, the selection
of the proximity matrix that accounts for the contiguity structure. Thus, these
effects are safer assumed to vary in a range governed by stochastic behavior and
not as fixed effects. Moran’s Index was used to confirm if spatial autocorrelation
exists. The CAR priors shall induce the spatial autocorrelation by a binary n xn
proximity matrix W = (w,), which is computed from the contiguity structure
of the n areal units. Based on W, the CAR priors take the form of a zero-mean
multivariate Gaussian distribution, where spatial autocorrelation is induced via
the precision matrix that depends on W. Leroux et al. (1999) proposed that the
strength of the autocorrelation be estimated from the data. The precision matrix
for this model involves an autocorrelation parameter and the proximity matrix
and is given by

Qp.W) = p(diagW1) — W) + (1 - p)l,

where / is an n xn identity matrix, 1 is an nx1 vector of ones, and diag(W1) is
a diagonal matrix with elements equal to the row sums of /7. The matrix Q(p, W)=
p(diag(W1)—W)+(1— p)l is proper if p € [0, 1), and the spatial structure
amongst ¢ can be observed more clearly from the univariate full conditional
distributions

Pel® ~N0rmal< p Xiz1 Wki®Pi 7? )
A PYi Wi +1—p pY wii +1—p
where ¢_, denotes the vector of random effects except for ¢,. Note that by nature
and construction of W above, w_= 0 whenever k = i, thus ¢, has weight zero in the
location parameter of its full conditional distribution. The parameter p controls
the spatial autocorrelation structure, with p = 1 corresponding to strong spatial
autocorrelation, while p = 0 corresponds to independent random effects (Besag et
al, 1991). The effects have constant mean and variance. Weakly informative prior
distributions are assigned to the other hyperparameters so as to allow for estimates
of these parameters to be determined from the observed data and not to skew the
analysis. The intercept coefficient in the logit function was assigned a univariate
Normal distribution with mean zero and homoskedastic. The hyperparameter 2,
accounting for the variation in the spatial effects are assigned the inverse-gamma.
The spatial autoregression parameter is assumed to be uniform over (0,1) since it
is over this support that the precision matrix is also deemed proper.
The posterior distribution for the dissimilarity index D (Lee et al, 2015) can
be computed using M Markov chain Monte Carlo (MCMC) samples from the
posterior distribution

{@(f)}’j‘_ilwhere o) — ((p(f), B, 72, p(j))_
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In the analysis, three values of M were used: 20 thousand, 30 thousand, and 40
thousand all with 50 percent burn-in. The posterior samples are then used to
construct samples p” = (p ,...,p 1), using the inverse logit transform

pd = exp (B + @) /11 + exp (B + o)1

The j* sample from the posterior distribution of D is constructed as

; NelpP—pD| - ;
DO = B o s = 1y, Mowhere pO) = (They Nip)/ By M.
Finally, D can be estimated by the median of {DW,..., D} while a 95 percent
credible interval is obtained from the 2.5 and 97.5" quantiles of {DW,..., D“}

4. Modelling Voter Participation in the Philippine National and
Local Elections (NLE) of 2016

Official data from the COMELEC was used in the research. Since voter
turnout is viewed here in a spatial data analysis paradigm, and therefore
contiguity-sensitive, turnout from overseas voting was not included. Provincial
level information on number of registered voters and actual voter turnout for 86
areal units comprise the entirety of the dataset. This includes special readings
for the cities of Isabela and Cotabato, which are labeled special provinces, and
the four districts of Manila. Proximity due to common-border cannot be used
since there are 15 island provinces, which are as follows: Batanes, Biliran, Bohol,
Camiguin, Catanduanes, Cebu, Dinagat, Guimaras, Marinduque, Masbate,
Palawan, Romblon, Siquijor, Sulu, and Tawi-Tawi. Here, connectivity was based
on a nominated critical distance. Special consideration arose for the island of
Palawan since a large critical distance was needed for it to have just one neighbor.
Thus, for this specific province, indication of geographic integration like presence
of boat routes and trade with a nearby province was used. This led to Iloilo being
set as Palawan’s neighbor. The proximity matrix was then revised to force a
neighbor for Palawan.

Areal centroids were identified via the Universal Transverse Mercator (UTM)
coordinate system. Inter-unit distance was computed via these coordinates.
Created a proximity matrix W based on L, distance of at most a nominated d.

1, d, (AuA)<é

W = {wy,} has wy, = {

Several values were tried for 6 but only in 6 = 500 UTM units did all areal
units, except Palawan, that had at least one neighbor. Iloilo was forced to become
Palawan’s neighbor by virtue of transportation and trade relations. A distance
decay term was introduced to the spatial variance matrix in accordance to Tobler’s
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principle. The term is g(d;;) = e™>* where d;; is the inter-centroid distance
between areal units i and j. A piecewise mean function was also generated for two
clusters: voter turnout greater than 80 percent where the mean turnout is 83 percent
and voter turnout less than 80 percent where the mean turnout is 73 percent. The
logit transform of the proportions are generated from a multivariate Gaussian
distribution with a mean of 0.99 (logit corresponding to the mean turnout of 73
percent) or 1.73 (logit corresponding to the mean turnout of 83 percent). Low,
moderate, and high (on account of Cotabato City) spatial variation scenarios were
investigated. The different spatial variation scenarios were included to see how
the dissimilarity index and the parameter estimates of the hierarchical Bayesian
model behave. This was done mainly to assess the performance of the model in
three situations. Low spatial variation assumes that nearby areas share generally
similar turnout while large variation assumes that nearby areas tend to have
widely dissimilar turnout. Moderate spatial variation assumed a middle ground.
The Bayesian model was fitted at M=20,000 ,30,000 and 40,000 MCMC samples.
Parameter estimation proceeded after 50 percent burn-in. Model fit was assessed
by the width of the credible intervals, variability of residuals and the Deviance
Information Criterion (DIC). The DIC was particularly chosen since it performs
like an Akaike Information Criterion (AIC) when comparing and selecting among
several hierarchical Bayesian models whose posterior distributions emanate
from MCMC samples (Spiegelhalter et al, 2002; Berg et al, 2004; Ando, 2007).
The DIC also promotes simplicity (i.e. parsimony) in resulting models since it
incorporates a penalty for model complexity (i.e. with more parameters). Note
that since the values of DIC are not normed; models with relatively smaller DIC
are favored. Narrower credible intervals, lower standard deviation of residuals,
and lower DIC signify good model fit. Data integration, computation of proximity
matrix, and testing for spatial autocorrelation were done in Geoda. Modelling was
done in R CARBayes package with extensive use of the S.CARleroux function.

5. Results

Voter turnout was generally high in the NLE of 2016 as indicated by an
average of 79 percent across the 86 areal units (Figure 1). The special province
of Cotabato City was outlying with a turnout of only 48 percent. There was a
significant positive spatial autocorrelation in voter turnout (Moran’s [ =0.22, p =
0.0067). This indicates that areas with relatively higher voter turnout are spatially
close. A similar conclusion can be said of areas with relatively lower voter
turnout. There is a suggestion of parity in voter participation across provinces as
evidenced by a dissimilarity index of D=0.15. The 95 percent confidence interval
is (0.113, 0.175) based on 10,000 bootstrap samples.
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Figure 1. Registered Voters, Actual Voters, and Voter Turnout in the
Philippine National and Local Elections of 2016
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The hierarchical model had poor fit under the assumption of high spatial
variation scenario within clusters given the official election voter turnout data
(Table 1). Here, the standard deviation of residuals and DIC are highest within tiers
of MCMC sample. The width of the 95 percent credible interval for the dissimilarity
index, intercept term for the logit expression, 1> and p are generally largest.

The hierarchical model had relatively better fit under the assumption of
moderate spatial variation scenario as compared to the model, given a high spatial
variation assumption. In this scenario, the standard deviation of residuals and DIC
are lower within tiers of MCMC sample. The width of the 95 percent credible
interval for the dissimilarity index, intercept term for the logit expression, > and
p tend to be narrower. The hierarchical model showed best fit under low spatial
variation scenario within clusters, given the official election turnout data. The 95
percent confidence intervals are narrowest within each group of MCMC samples.
Residual variability is at its least and so is the DIC. Estimates seem to have good
precision at M=30,000 MCMC samples (50 percent burn-in). Here, the spatial
autocorrelation parameter can reasonably be expected to fall in the interval
(0.001, 0.181).

The dissimilarity indices generated across all scenarios are relatively small.
These values signify that variability in voter participation is indeed small across
provinces. There is generally high turnout nationwide with provincial rates which
are not far from this general average.
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Table 1. Results of Bayes Modelling of Voter Turnout in the Philippine National and Local Elections of 2016

POSTERIOR QUANTITIES AND MODEL FIT
Scenario A: Low spatial variation
M=20,000 (50% Burn In) M=30,000 (50% Burn in) M=40,000 (50% Burn in)
Median | 195 u9s width | Median | L95 U95 width | Median | 195 U95 width
Dissimilarity, D | 0.103 0.097 0.121 0.024 0.141 0.137 0.142 0.005 0.120 0.119 0.120 | 0.001

Intercept 1.097 1.095 1109 | 0.04 1.099 | 1.098 | 1.101 0003 | 1114 | 1113 1115 | 0.002
tau-square 0.191 0113 | 0619 | 0506 | 0221 | 0.118 | 0.875 0757 | 0.194 | 0114 | 0874 | 0.760
rho 0.014 | 0000 | 0109 | 0209 | 0022 | 0.001 | 0.181 0.180 | 0.015 | 0.001 | 0171 | 0.170
SD residuals 184.67 168.22 181.97
DIC 3011698 2515216 2914018
Scenario B: Moderate spatial variation
M=20,000 (50% Burn In) M=30,000 (50% Burn in) M=40,000 (50% Burn in)

Median | 195 Ugs width | Median | L95 U9s width | Median | 195 U9s width
Dissimilarity, D | 0.098 0.097 0.099 0.002 0.092 0.092 0.098 0.006 | 0.103 0.102 0.103 0.001

Intercept 1292 | 1291 | 1293 | 0.002 | 1286 | 1283 | 1287 | 0.004 | 1305 | 1304 | 1306 | 0.002
tau-square 0250 | 0139 | 1424 | 1285 | 0223 | 0124 | 1.069 | 0945 | 0253 | 0143 | 1165 | 1022
rho 0.017 | 0.001 | 0240 | 0239 | 0.019 | 0.000 | 0.205 | 0205 | 0.018 | 0.001 | 0.184 | 0.183
SD residuals 222.96 204.17 216.36
DIC 4313926 3629979 4053158
Scenario C: High spatial variation
M=20,000 (50% Burn In) M=30,000 (50% Burn in) M=40,000 (50% Burn in)

Median | 195 ugs width | Median | L95 U9s width | Median | 95 U9s width
Dissimilarity, D | 0.223 | 0222 | 0228 | 0.006 | 0207 | 0.206 | 0.208 | 0.002 | 0.209 | 0203 | 0213 | 0.010

Intercept 1210 | 1208 | 1212 | 0.004 | 1223 | 1214 | 1225 | 0011 | 1217 | 1215 | 1218 | 0.003
tau-square 1406 | 0449 | 7.197 | 6.748 | 1784 | 0545 | 6326 | 5781 | 0.864 | 0327 | 4425 | 4.098
rho 0.113 | 0014 | 0743 | 0729 | 0169 | 0.026 | 0.669 | 0643 | 0.063 | 0.005 | 0452 | 0.447
SD residuals 238.28 229.23 21991

DIC 4334536 4514759 4165975

6. Conclusions, Recommendations and Learnings

Both Bayesian and non-Bayesian models reveal that there is low dissimilarity
in voter turnout among the 86 areal units contained in the official COMELEC
dataset. When spatial variation is taken into account, there is sufficient basis to
say that the spatial variation is low. Thus, it is clear that Filipinos participated well
in the National and Local Elections of 2016 and quite consistently homogeneous
in pattern if taken spatially. As to the statistical specification of the model, the
case of the Philippines requires critical distance of 500,000 UTM units to assure
that areal units have at least one neighbor based on inter-centroid. A proximity
matrix can still be constructed for a critical distance lower than this value but the
algorithm fails to converge due to provinces without neighbors. For the case of
Palawan, one needs to override the generated proximity matrix to force a neighbor
under some special criterion (here, transportation and trade relation). Localized
smoothing is beyond the scope of this study and is a suggested improvement
moving forward. In addition, the dissimilarity index in voter turnout should be
tracked over time to validate if the Philippine electorate is indeed participative.
The technique presented here may be also be applied to other areal information
with inherent spatial variation like poverty and health statistics where strong
spatial components are expectedly inherent.
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