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An ideal outbreak detection algorithm must be able to generate 
alarms early into an outbreak while providing optimal sensitivity and 
specificity so as to mitigate mortality and other potential costs of 
investigation and response to these events. One particular disease 
of interest is measles, which is a highly contagious disease that 
exhibited periodic outbreaks in the Philippines. The performance 
of the NGINAR(1) and ZINGINAR(1) models for measles outbreak 
detection was examined through the use of simulated datasets 
and an actual application to reported measles cases in the 
Cavite province from 2010 to 2017. The models were evaluated 
based on their goodness-of-fit as well as the sensitivity, specificity, 
and timeliness of the detection thresholds they have generated. 
Comparisons were done against ARIMA models and the popular 
Poisson INAR(1) model. Results show that INAR models have 
considerably higher probabilities of detection than ARIMA models, 
particularly for outbreaks of small magnitudes. The Poisson INAR(1) 
generates the most alarms and thus, has the highest sensitivity 
metrics. The NGINAR(1) and ZINGINAR(1) models, however, have 
lower false positive rates with outbreak detection capabilities 
comparable to the Poisson INAR(1). The NGINAR(1) model may be 
chosen as the best model considering its simplicity and its balance 
of sensitivity, specificity, and timeliness which is optimal for a disease 
such as measles.
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1. 	 Introduction
An outbreak is an excess from normal levels of disease cases in a population. 

However, not all exceedances are sufficient to label an event as an outbreak. 
Determining whether an event is an outbreak or not includes a subjective element 
– it depends not only on the magnitude of the excess, but also on other factors 
such as whether the impact of not investigating an event is greater than the cost of 
investigation (Dato, Shephard, and Wagner, 2006). Also, definitions of outbreaks 
vary for different diseases. The World Health Organization (WHO) states that 
diseases with different incidence rates or immunization program objectives 
would have different thresholds for outbreaks (WHO, 1999). Outbreaks, when 
not detected and controlled early, can lead not only to increased morbidity and 
mortality, but also to incurred costs from activities in response to these events. 
Thus, outbreak detection must not only be timely but also efficient in the sense 
that false alarms are minimized, so as to mitigate the cost of investigation and 
response.

As an example, an outbreak of measles was recently declared on February 
2019 in several regions of the Philippines, with the most cases and deaths from 
Metro Manila and Region IV-A (CALABARZON) – the region comprised of the 
Cavite, Laguna, Batangas, Rizal, and Quezon provinces (DOH, 2019a). Naturally, 
due to the increase in cases and deaths, the Department of Health (DOH), along 
with other government agencies have launched several programs and activities in 
response to the outbreak. This includes the deployment of vaccination centers in 
public places malls and fast food chains and massive information dissemination and 
immunization campaign (DOH-CALABARZON, 2019a; DOH-CALABARZON, 
2019b; DOH, 2019b). 

With the knowledge of the possible negative impacts of a disease outbreak, 
detecting them in their early stages is ideal. Due to the time dependent nature of 
data for outbreak detection (e.g., weekly or monthly reported cases of a certain 
disease), along with the emphasis on timeliness of detection, some common 
algorithms for outbreak detection are purely temporal. The problem of outbreak 
detection can be translated to a signal detection problem in which an alarm will 
be made once a monitored statistic exceeds a set threshold. The use of time series 
models is one class of statistical methodology used for this purpose. It has some 
merits of its own in that models have no assumption of temporal independence, 
instead, observations are assumed to exhibit a degree of autocorrelation which 
might be a more appropriate assumption for a disease incidence series. Also, 
one important objective of time series modelling is forecasting of future values. 
Forecasting would be useful for prospective planning and control for disease 
surveillance as this enables concerned institutions or individuals an idea about the 
future behavior of diseases.

As early as the paper by Serfling (1963) on detecting influenza outbreaks, 
forecast limits have been used to define outbreak detection thresholds. Allard 
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(1998) suggested the use of the upper forecast limits provided by the autoregressive 
integrated moving average (ARIMA) model as a threshold for signaling an 
outbreak for some infectious diseases. However, ARIMA models have an 
assumption of normality which do not reflect the integer-valued nature of disease 
incidence that involves the use of reported cases (count data). Furthermore, counts 
may exhibit skewed distributions, especially for rare diseases in which daily or 
weekly reported cases may exhibit an excess of zeros. Also, ARIMA models were 
observed to adjust to local peaks in the series and thus, cannot detect outbreaks 
of small magnitudes (Reis and Mandl, 2003). Cardinal, Roy, and Lambert (1999) 
proposed the use of integer valued autoregressive (INAR) models which were 
shown to provide smaller forecast errors and non-negative integer-valued forecast 
limits. Paman et al. (2017) have successfully fitted Poisson INAR models on daily 
reported cases of measles in Metro Manila and compared its performance with 
ARIMA, in terms of sensitivity, false positive rate, and relative delay in detecting 
outbreaks. Their results show that INAR models performed favorably as compared 
to ARIMA. However, it was also shown that the Poisson INAR models might not 
be appropriate for the counts of measles as it exhibits empirical overdispersion.

Ristić, Bakouch, and Nastić (2009) proposed the new geometric first-
order integer-valued autoregressive (NGINAR(1)) model as an alternative 
way for modelling count data. In modelling monthly counts of sex offense, the 
NGINAR(1) model was shown to perform favorably compared to various first-
order INAR models with different distributional assumptions in terms of the 
Akaike Information Criterion (AIC) and Residual Mean Squares (RMS). Ristić, 
Bourguignon, and Nastić (2018) proposed the use of a zero-inflated NGINAR(1) 
model or ZINGINAR(1) model with zero-inflated geometric marginals as an 
alternative when dealing with data that have more zeroes than expected. However, 
the adequacy of both the NGINAR(1) and ZINGINAR(1) models for outbreak 
detection has not yet been evaluated and thus, it is of interest to determine if there 
are any practical advantages of using these models as compared to other existing 
models.

This research was conducted to provide alternative algorithms which may be 
optimal for measles outbreak detection. Hence, it is aimed to examine how the 
conceptual advantages of the NGINAR(1) and ZINGINAR(1) such as considering 
overdispersion and zero-inflation translate to the problem of outbreak detection. 
Particularly, the specific objectives of the study include: (1) to illustrate the use of 
thresholds derived from the Poisson INAR(1), NGINAR(1), and ZINGINAR(1) 
models for outbreak detection; (2) to demonstrate the applicability of the detection 
algorithms to an actual measles dataset from Cavite; and (3) to evaluate and 
compare the performance of these models with ARIMA models.

The study focuses only on the comparison of time series models, with 
emphasis on the integer-valued models, for outbreak detection. Furthermore, 
to maintain the simplicity of model fitting and interpretability in the context of 
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disease surveillance, more complex developments in modelling discrete-valued 
time series such as combined INAR(p) models and INAR models with random 
coefficient (RC) thinning were not included. Weiss (2018) posits that while these 
models exhibit some interesting properties, the data generating mechanisms are 
artificial, and not easily interpretable. Lastly, results may only be generalized to 
measles incidence exhibiting a similar behavior to that of Cavite (i.e., similar 
baseline series and outbreak characteristics).

2.	 Measles Case Definition and Investigation
This section summarizes standard case definitions, symptoms, and detection 

thresholds for measles which have been documented in the Manual of Procedures 
for the Philippine Integrated Disease Surveillance and Response (PIDSR) 
prepared by the National Epidemiology Center (NEC) of the DOH (DOH-NEC, 
2008; DOH-NEC, 2014).

The DOH defines measles as an acute highly communicable illness 
characterized by a prodrome of fever, conjunctivitis, cough, coryza, and Koplik 
spots followed by maculopapular rash on the third to seventh day. Transmission of 
the disease is through direct contact or articles freshly soiled with nasal or throat 
secretions of infected persons. Incubation period ranges from 7 to 21 days from 
exposure to onset of fever and usually 14 days until rash appears.

They also classify cases of measles as suspected, laboratory-confirmed, 
or epidemiologically-linked. Suspected cases of measles are defined by the 
appearance of one or more of the prodromes of the disease. A suspected case is 
reclassified as a laboratory-confirmed case after successful laboratory diagnosis 
while an epidemiologically-linked case of measles is defined as a suspected 
measles case, which had contact with another epidemiologically-linked case or 
a laboratory confirmed case 7 to 21 days before the onset of rash while the latter 
was infectious at the time of contact. Lastly, cases will be discarded or reclassified 
when a suspected case is not serologically confirmed or confirmed for another 
disease such as rubella or dengue.

Thresholds for action are set by the DOH to determine if disease levels 
warrant investigation or urgent response. Alert thresholds serve as an early 
warning threshold while epidemic thresholds warrant immediate response. Alert 
thresholds are computed by taking weekly or monthly averages of a particular 
disease during the past three to five years and adding one standard deviation, 
while for epidemic thresholds, two standard deviations are added. For measles, 
a suggested threshold of one suspected case is enough to trigger an alert. A 
confirmed outbreak is when the number of cases exceeds the epidemic threshold.

3.	 Definition of Outbreak Periods
While there are several methods proposed for outbreak detection, the issue 

of having a standardized evaluation procedure for these detection algorithms has 
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been less addressed. Watkins, Eagleson, Hall, Dailey, and Plant (2006) provides 
a review of 63 studies on their approaches to the evaluation of outbreak detection 
algorithms. One main issue identified is the definition of an outbreak criterion 
which will be used as gold standard to evaluate sensitivity, specificity, and 
timeliness of the algorithms.	
	 The review by Watkins et al. (2006) provides different approaches in defining 
outbreak periods. One approach involves no outbreak criterion, relying only on 
descriptions of the outbreak detection algorithm such as the number of alarms 
and time of first alarm before peak number of cases. Alternatively, some of the 
studies included in their review define an outbreak criterion through an arbitrary 
threshold or a fixed number of cases; this approach has the advantage of simplicity. 
However, they have also noted that this approach may be improved by considering 
expert opinion and the characteristics of the disease in defining thresholds, thus, 
capturing the subjectivity of the definition of outbreaks. 

A simulation approach was also discussed in their review in which purely 
simulated datasets or real datasets with simulated outbreaks are used. In this 
approach, the researcher can freely define the start and end of outbreaks, at the 
cost of authenticity. Watkins et al. (2006) suggests using a combination of these 
approaches to maximize the advantages of each.

For this study, a combination of these approaches was applied to a measles 
incidence time series dataset from Cavite to define outbreak periods. The 
data consists of weekly counts of measles in Cavite from January 1, 2010 to 
December 31, 2017 (i.e., 417 weeks). The counts consist of laboratory-confirmed 
and epidemiologically-linked cases. Data was requested from the Provincial 
Epidemiology and Surveillance Unit (PESU) of the Cavite province.

To retrospectively define which events are considered as outbreaks, as well 
as to determine when these periods start and end, some thresholds and padding 
measures were employed. The procedures for identifying outbreak periods from 
real data were adapted from Rolfhamre and Ekdahl (2006), while the procedure 
for setting the beginning and end of an outbreak period was based on Paman et al. 
(2017). The following steps were carried out:
1.	 The series was first inspected and periods with unexpected peaks in measles 

incidence were identified subjectively and marked as suspected outbreaks. 

2.	 Since not all exceedances could be considered outbreaks, associated reports 
of an outbreak were investigated for the events identified. Only the suspected 
outbreaks with an associated report were considered as true outbreaks.

3.	 The start of an outbreak will be marked as the first of two consecutive weeks 
with more than three reported measles cases. The end of the outbreak will 
be marked as the last of two consecutive weeks with three or less reported 
measles cases. The threshold of more than three reported measles cases was 
based on the series mean.

Mojica, V.J.C.  and Co, F.F. 
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Considering that the true start and end of an outbreak cannot be exactly 
identified, an adjustment of three weeks before the start, and after the end of an 
outbreak. These weeks will be the basis for the definition of the start and end of 
an outbreak to be used throughout the study. A three-week padding was based on 
an upper bound of the number of days from exposure to rash onset. 

4.	 Simulation Framework
While the usage of real datasets has the advantage of authenticity, it has the 

disadvantage of not knowing the exact start and end of an outbreak as well as the 
fact that algorithms presented will only be applied to a single dataset. This leads 
to the inability to test the generalizability of results and to generate empirical 
distributions for the performance metrics. To address this, simulated datasets 
similar to the Cavite measles series were generated. This simulation procedure 
was carried out in a similar manner with Paman et al. (2017). The procedure was 
done as follows:
1.	 The original series was used as a reference dataset to estimate mean, trend, 

and seasonality parameters of measles. In carrying this out, identified outbreak 
periods were first removed from the reference series to capture the behavior 
of the series without the aberrations. A Serfling model was then fitted to the 
remaining observations. 

	 The Serfling model (Serfling, 1963) is a cyclic regression model, which 
assumes that data is sinusoidal with a period of one year along with a secular 
trend. Variations of this model have been used in some recent studies to 
simulate datasets of a desired level of mean, trend and seasonality (Paman et 
al., 2017; Bédubourg and Le Strat, 2017). The Serfling model fitted was of 
the form

0 1
2 2ˆ cos sin ,
52 52t t

t tY t a bπ πβ β ε= + + + + + + 	 (1)

	 where β0 is the constant term, β1 is the coefficient for the linear trend, a and 
b are the amplitudes of the Fourier terms, and εt constitutes the random error. 
The notations cos+ and sin+ denote the cosine and sine functions, respectively, 
with non-negative range. A nonlinear (weighted) least squares estimation 
procedure was employed to obtain the parameter estimates. This was carried 
out through the nls() function in R.

2. 	 The random error component of the Serfling model is usually assumed to 
follow a pre-defined parametric distribution or an empirical distribution 
derived from the residuals of the Serfling model. For this study, the parameter 
estimates from the Serfling model were first used to generate a baseline curve 
for the simulated datasets. A random error term was then added to the fitted 
values. The error terms were derived through resampling with replacement 
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from the empirical distribution of the residuals from fitting the model to 
the original dataset. Values were then rounded off to the nearest integers to 
generate the final simulated baseline series.

3.	 Locally weighted regression (LOESS) was employed to simulate outbreaks. 
It is a non-parametric regression approach used when linear or polynomial 
regression surfaces cannot replicate the data (Cleveland and Devlin, 1988). 
Its equation is given by

yi = g(xi) + ei, 	 (2)

	 where yi are the values of the response variable, xi are the values from the 
matrix X of p predictors for individual i, and εi are random errors. The 
regression function g(xi) is approximated locally by fitting a regression 
surface to a certain window of data points.

	 To replicate the behavior of the Cavite series during outbreaks, the t̂Y values 
from the simulated baseline series from (1) were subtracted from the actual 
values on the outbreak periods. The residuals were then fitted with a LOESS 
curve and added to the simulated baseline data. This was carried out using the 
loess() function in R.

The procedure was done to generate 1000 datasets with similar characteristics 
to the original series. with A burn-in period of 5000 simulations. The entire 
simulation procedure was carried out in R.

5. First-order Integer-Valued Autoregressive (INAR(1)) Models

5.1. The Poisson INAR(1) model
Integer-valued autoregressive (INAR) models were first introduced by 

McKenzie (1985) and Al-Osh and Alzaid (1987) with their INAR(1) model. This 
model provides a counterpart to the continuous AR(1) model, Xt = a . Xt-1 + et, 
where |a | < 1, which does not preserve the integer-valued nature of count time 
series due to the multiplication of a even if the innovations et. The INAR(1) model 
addresses this issue through the use of the binomial thinning operator ‘0’ (Steutel 
and Van Harn, 1979) instead of multiplication. The model is given by

Xt = α º Xt-1 + et,	 (3)

where α ∈ [0,1), and the sequence of innovations {et} is composed of independent 
and identically distributed (i.i.d) random variables which are non-negative and 
integer-valued. The term α º X denotes the binomial thinning operation expressed 
as

0
,

X

i
i

X Yα
=

=∑

	 (4)

Mojica, V.J.C.  and Co, F.F. 
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where {Yi} is a sequence of i.i.d Bernoulli random variables with P(Yi = 1) = α 
independent of X. The Yi are referred to as the counting series. When used to 
model disease incidence, the number of new cases of a disease at time t, given by  
Xi is represented as the sum of (i) the number of new cases transmitted from those 
which developed during time (t – 2, t – 1), where each of the latter successfully 
transmits the disease to one individual with probability α, and (ii) the number 
of cases generated from independent sources, given by et. The innovations are 
commonly assumed to be Poisson, and due to the additive property and invariance 
with respect to the binomial thinning of the Poisson distribution, the observations 
Xt also follow a Poisson distribution. This particular specification is commonly 
denoted as the Poisson INAR(1) model.

The autocorrelation function (ACF) of the INAR(1) process is ρ(k) = αk, 
exponentially decaying for higher values of k. The partial autocorrelation function 
(PACF) for the process is given by ρpart (1) = α and ρpart (k) = 0 for k > 1. This 
suggests that the ACF and PACF of an INAR(1) process is similar to that of a 
real-valued AR(1) process.

5.2. INAR(1) models for counts with overdispersion  
	 and zero-inflation

Overdispersion is defined as the presence of greater variability in observations 
than expected from a given model while zero-inflation is defined as an excess of 
zeros as compared to what is expected from a given distributional assumption. 
Count time series, especially daily and weekly reported cases of infectious 
diseases, almost certainly exhibits both characteristics.

As discussed in Section 5.1, a Poisson distribution is commonly assumed for 
INAR models, comparable to the normal distribution for real-valued time series. 
One of its properties is that its variance (σ2) is equal to its mean (μ). Weiss (2018) 
defines the Poisson index of dispersion as

2

,I σ
µ

= 	 (5)

which is used for non-negative integer-valued random variables with unlimited 
range (N0). An index of dispersion I > 1 denotes an overdispersed distribution.

For zero-inflation, Weiss (2018) defines the zero index

ln1 ,o
zero

pI
µ

= +
	 (6)

where p0 = P(X = 0). The zero index takes the value of 0 for the Poisson distribution, 

thus indicates zero-inflation. The empirical index of dispersion 
2

ˆ ,SI
X

= where S2 

is the sample variance X and is the sample mean, is asymptotically unbiased for I 
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and thus, may be a good initial indicator of overdispersion with respect to Poisson 
(Schweer and Weiss, 2014).

To accommodate overdispersion, one alternative model proposed is the 
NGINAR(1) model introduced by Ristić et al. (2009). This model presents two 
main differences from the Poisson INAR(1) model in terms of construction: (i) the 
use of negative binomial thinning operator and (ii) the assumption of geometric 
marginal distribution for the observations Xt.

The NGINAR(1) process is given by

Xt = α * Xt-1 + et, 	 (7)

where {Xt} is a stationary process with Geometric 1
1 µ
 
 + 

 marginals, the sequence 

of innovations {et} is an i.i.d. non-negative integer-valued process, and α ∈ [0,1). 
The term α * X denotes the negative binomial thinning operation expressed as

0
,

X

i
i

X Wα
=

∗ =∑ 	 (8)

where the counting process {Wi}is a sequence of i.i.d. random variables with 

Geometric
1

1 α
 
 +   distribution. The distribution of the innovations as derived by 

Ristić et al. (2009) is given by

1 1( ) 1 ,
(1 ) (1 )

l l

t l lP l αµ µ αµ αε
µ α µ µ α α+ +

 
= = − + ⋅ − + − +  	

(9)	

which is a mixture of two geometric random variables. It must be noted that this 

probability is defined only for 0, ,
(1 )
µα
µ

 
∈  + 

 otherwise, probabilities generated 

might not all be non-negative.
The NGINAR(1) also has an AR(1)-like autocorrelation structure, with an 

ACF given by ρ(k) = ak. The model gives an alternative to the Poisson INAR(1) 
model by accommodating overdispersion and using the negative binomial thinning 
to allow the counting process to take on values other than 0 or 1. An interpretation 
of the NGINAR(1) process in terms of modelling disease incidence is similar 
to the INAR(1) model but with cases developing during time (t – 2, t – 1) able to 
transmit to more than one individual with exponentially decaying probability.

The ZINGINAR(1) model was developed by Ristić et al. (2018) as an 
alternative to NGINAR(1) for data with an excess of zeros than expected from an 
NGINAR(1) process. It is given by:

Mojica, V.J.C.  and Co, F.F. 
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0,   

,      1- 't
t

with probability
Z

X with probability
π
π


= 


	 (10)

where Xt is the NGINAR(1) process given in (7). Its ACF is given by

(1 )(1 )( ) .
1 (1 )

k

k π µ αρ
µ π

− +
=

+ +

	 (11)

5.3. Parameter estimation and forecasting
For this study, Poisson INAR(1), NGINAR(1), ZINGINAR(1) models were 

fitted for each of the 1000 simulated datasets as well as the original dataset. Two 
ARIMA models were also included in the comparison: a real-valued AR(1) model 
and an ARIMA model identified through the auto.arima() function from the 
forecast package in R. The AR and MA orders for the latter are identified based on 
the Akaike Information Criterion (AIC) (Hyndman and Khandakar, 2008). These 
five constitute the models used for comparisons.

For parameter estimation, Yule-Walker, least squares, and maximum 
likelihood (ML) estimators were defined for Poisson INAR(1), NGINAR(1), 
and ZINGINAR(1) models on Weiss (2018), Ristić et al. (2009), and Ristić et 
al. (2018), respectively. However, ML estimators were employed in accordance 
to the results of the Monte Carlo simulations from Ristić et al. (2009) and Ristić 
et al. (2018). In these simulations, ML or conditional ML estimates were shown 
to exhibit the best parameter recovery in terms of unbiasedness and standard 
errors albeit by small margins as compared to Yule-Walker and least squares 
estimators. However, ML estimators for the INAR models do not have a closed 
form expression. Thus, ML estimation was carried out using numerical methods, 
through the optim() function in R. A quasi-Newton method for bound constrained 
optimization called the L-BFGS-B method proposed by Byrd, Lu, Nocedal, and 
Zhu (1995). This was chosen since the parameters for all models are bounded (e.g. 
no parameter can take on negative values). 

The log-likelihood functions for the Poisson INAR(1), NGINAR(1) and 
ZINGINAR(1) models were first defined as the objective function and Yule-Walker 
estimates were set as initial values. The log-likelihood functions for each model 
were obtained from their respective conditional one-step ahead probability mass 
functions (pmf) presented in Freeland and McCabe (2004), Awale, Ramanathan, 
and Kale (2017), and Ristić et al. (2018), respectively. ML estimators based on the 
full likelihood function was defined for Poisson INAR(1) and NGINAR(1) model, 
while a conditional ML estimator was defined for the ZINGINAR(1) model. The 
conditional one-step ahead pmf for each model is presented below:
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( )
min( , )

1
0

1| (1 ) .
!

y x
s x s y s

t t
s

x
P X y X x e

s y s
λα α λ− − −

+
=

    
= = = −    −    

∑
	

(12)

( )1 0
| ( ) ( ),y

t t tr
P X y X x P x r P y rα ε+ =

= = = ∗ = = −∑ where	 (13)

( )
1

1
( ) 1 ,

x
rx

i
i

r x
P x r P W r p p

r
α

=

+ −  ∗ = = = = −  
   
∑

1( | )t tP Z z Z u+ = =

21 1
{ 0}

1

1

( ( . 0(1 ) (1 ) , 0, 0
( 0) ( 0)

(1 ) ( 0 | ), 0, 0
(1 ) ( | ), 0, 0

t t t
z

t t

t t

t t

P X Z P X z XI z u
P Z P Z

P X X u z u
P X z X u z u

π π π π

π π
π

+ +
=

+

+

= = == + − + − ≥ = = =
 + − = = = >
 − = = = >

	

For the ZINGINAR(1) model, the optimization algorithm does not converge 
with Yule-Walker estimates as initial values. Accordingly, a grid search algorithm 
was initially employed to locate local peaks in the log-likelihood function. For the 
grid search algorithm, a total of 1620 parameter combinations were examined to 
determine which maximizes the log-likelihood function. For the parameter α, the 
values examined were from 0.1 to 0.9, by 0.1 units; for μ: 1 to 20 by 1 unit; and 
for π: 0.1 to 0.9 by 0.1 units. The optimal combination of parameters was used as 
initial values for the optim() procedure instead of the Yule-Walker estimates. The 
success of the optim() procedure is dependent on the initial values used; the grid 
search algorithm was done in order to utilize initial values which are sufficiently 
close to the optimal ML parameter estimates.

Forecasting was also carried out through an R program by calculating one-
step ahead conditional means E[Xt+1|Xt]. Outbreak detection thresholds were 
generated by taking the upper 95% forecast limit for each model. Both the point 
forecasts and forecast limits were derived from the one-step ahead conditional 
distributions for Poisson INAR(1), NGINAR(1), and ZINGINAR(1) as shown in 
(12), (13), and (14), respectively.

6.	 Performance Evaluation of Outbreak Detection Algorithms
Forecasting accuracy and model fit were first measured by the in-sample 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the Akaike 
Information Criterion (AIC). These quantities were computed for each iteration 
of model fitting for each simulated series. The outbreak detection thresholds 
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generated were evaluated for their accuracy and timeliness in detecting outbreaks 
using the performance metrics described below. To simplify the definition of the 
performance metrics, we denote the number of outbreak weeks with an alarm as 
True Positives (TP), the number of non-outbreak weeks without an alarm as True 
Negatives (TN), the number of non-outbreak weeks with an alarm as False Positive 
(FP), and the number of outbreak weeks without an alarm as False Negative (FN):

•	 Sensitivity (Se). This metric is computed as Se=TP⁄(TP+FN). This 
measures how often the model correctly identifies outbreak weeks among 
all alarms generated.

•	 False Positive Rate (FPR). This is defined as the proportion of weeks with 
an alarm in the absence of an outbreak. This is computed as FPR=FP/
(FP+TN). 

•	 Specificity (Sp). This is defined as the proportion of non-outbreak weeks 
correctly identified by the model. This is computed as Sp=TN/(TN+FP).

•	 Probability of Detection (POD). This is an event-based sensitivity-like 
metric computed for each outbreak identified. If an alarm is generated at 
least once within an outbreak period, then it is considered detected.

•	 Probability of detection during the first week (POD1wk). This is another 
sensitivity-like metric which also assesses a model’s ability to make 
timely detections. It is defined as the proportion of correctly identified 
outbreaks on its first week.

•	 Average time before detection (ATBD). This is a measure of timeliness 
computed as the average number of weeks between the start of an outbreak 
and its detection.

•	 Positive predictive value (PPV), .TPPPV
TP FP

=
+

•	 Negative predictive value (NPV), .TNNPV
TN FN

=
+

 

All measures were computed for each of the 1000 simulated datasets by 
fitting the five models and computing each measure (i.e., MAE, RMSE, AIC, Se, 
Sp, POD,...) for each repetition. The POD and POD1wk measures were adapted 
from Bédubourg and Le Strat (2017).

To compare the performance of the five fitted models, the average for each 
performance metric was taken and used as the basis for comparison. In this way, 
event-based measures such as POD and POD1wk were computed as proportions 
of the 1000 simulations where each model has captured the event of interest. Also, 
the average time before detection (ATBD), as measured in weeks, was computed 
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conditional to the algorithm successfully detecting the outbreak. For comparisons, 
models with generate low false positive rates (FPR) and low delays in detection, 
as well as high sensitivity, specificity, and probability of detection (POD, and 
POD1wk) are considered to perform better. Furthermore, themes for comparison 
include (i) comparing INAR and ARIMA models in general and (ii) comparing 
the three INAR models.

The procedure for performance evaluation and comparison for the original 
dataset is similar to the simulated dataset. The performance measures for forecast 
accuracy and model fit, as well as the outbreak detection accuracy and timeliness 
were computed for a single dataset. Event-based measures were instead recorded 
as binary variables indicating whether the event of interest was captured by a 
model (i.e., POD = 1 if an outbreak is detected, and 0 if not). Additionally, a 
comparison of forecast and model fit during outbreak periods was included for 
the original dataset, so as to determine if models considering overdispersion better 
capture the variation in the series.

7. 	 Results and Discussion

7.1.	 Preliminary results
An initial investigation of reported outbreaks in Cavite suggested that there 

have been two outbreaks in the province during the covered period. The first 
outbreak was reported around mid-February 2010 (ABS-CBN News, 2010), while 
the second outbreak was reported around late January 2014 (Manila Bulletin, 
2014). Ylade (2018) reported that the latter outbreak started in 2013 for some 
regions of the Philippines including CALABARZON. Thus, this outbreak might 
already be on its course as of January 2014. Using the outbreak definition criteria 
discussed in Section 3, the first outbreak was found to have an average of 4.45 
cases per week while the second outbreak has an average of 18.26 cases per week. 
There are also 189 zeroes in the series.

The non-outbreak series has a sample mean of 0.88 cases per week and 

exhibit an empirical index of dispersion ˆ 1.89I = . A method of moments estimate 

for the zero index

 

can be obtained as

 

{ }0
1ln

ˆ 1 0.2378.
tX

zero

I
nI

x

=

 
 
 = + =
∑

 These 

indices indicate that the measles series is likely to be from an overdispersed and 
zero-inflated distribution with respect to the Poisson distribution. A plot of the 
data and the identified outbreak periods are shown in Figure 1.

Regarding the outbreak periods defined, the approaches discussed by Watkins 
et al. were considered. The threshold of more than three cases based on the series 
mean was found to be similar to the threshold utilized by the WHO Region of the 
Americas for a defined geographical area as of 1999 (WHO, 1999). This is a time 
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when the region was in a measles elimination phase, slightly before achieving 
sustained elimination of endemic measles in 2002 (Bellini and Rota, 2011). This 
phase is similar to the scenario in the Philippines in the covered period (2010-
2017). 
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Figure 1. Reported measles cases in Cavite from  
January 1, 2010 to December 31, 2017

A slight peak at the beginning of 2012 was not identified as an outbreak based 
on the criteria set in the methodology section since no reports were tied to this 
suspected outbreak. The two identified outbreaks also satisfy the estimated inter-
epidemic interval of 4-8 years in the vaccination era stated by Cutts, Henderson, 
Clements, Chen, and Patriarca (1991), and WHO (1999). Relating to Watkins 
et al. (2006), the outbreak definition used for the study has its strengths in that 
it maximizes the simplicity of defining outbreak periods (i.e., setting a defined 
threshold of three cases), while considering subjectivity and properties of the 
disease (i.e., setting padding measures to consider the early stages of measles, and 
examining official reports to consider if these events are enough to merit attention 
from the public health sector). Furthermore, a simulation approach was also used 
to determine if results are generalizable for similar series.

The baseline series is characterized by the fitted Serfling model. Parameter 
estimates from this model are shown in Table 1. The Serfling parameters suggest 
that the measles baseline series, which pertain to the normal level of the disease, 
exhibits a sustained low incidence with a faint decreasing trend and slight annual 
peaks even in the absence of the outbreaks.

Table 1. Parameter estimates from the Fitted Serfling Model
Parameter Estimate

β0 1.6472

β1 -0.0034

a 0.3045
b 0.2005
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LOESS curves were fitted to the observations in the outbreak periods. This 
was done to replicate the behavior of measles cases during the two defined 
outbreaks. The fitted values were added to the baseline series to simulate the 
outbreaks. A total of 1000 simulations were generated. Figure 2 shows the plot of 
a portion of one simulated series.
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Figure 2. A portion of one of the simulated series (broken lines) plotted against  
the original series (solid line). The first outbreak is shown on the left side  

(peak at week 9).

7.2 	Performance evaluation with simulated data

7.2.1 Evaluation of point forecasts
For the point forecasts, one-step ahead conditional means were used, thus, 

even INAR models do not generate integer-valued forecasts. However, only 
the ARIMA models generated by the auto.arima() procedure generate negative 
forecasts which are not desired when forecasting counts.

In comparing MAE and RMSE for the 1000 simulated series, the difference 
between INAR models and ARIMA models are evident. The distributions of MAE 
and RMSE are shown in Figure 3. ARIMA models have generally lower MAE 
and RMSE as compared to the INAR models. These results did not exactly follow 
that of Cardinal et al. (1999), where INAR models provided lower forecast errors 
than real-valued AR counterparts in modelling meningococcal infections. This 
difference emphasizes that the type of disease, and objective of modelling, must 
be considered in choosing a model. Negative forecasts from the Auto-ARIMA 
model diminishes this perceived advantage in terms of MAE and RMSE. Also, it 
must be noted that this difference between ARIMA and INAR models, when put 
into context, is not extreme. For example, the MAE of NGINAR(1) and AR(1) 
models have a discrepancy of only 0.2405 cases, on average.

Besides MAE and RMSE, the AIC was also used for comparison. Hyndman 
(2013) suggests that AIC is optimal for forecasting and that while it is computed 
in-sample, minimizing it is equivalent to minimizing the MSE of out-of-sample 
one-step ahead forecasts, making it a useful criterion in selecting a model. The 
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AIC was also stated to be comparable across different likelihoods if computed 
from the same data. The distribution of AIC for each model is shown in Figure 
3. Based on AIC, the NGINAR(1) and ZINGINAR(1) models were found to 
provide a substantial improvement as compared to both the Poisson INAR(1) and 
the ARIMA models.

 

Figure 3. (From left to right) Distribution of MAE, RMSE, and AIC by model for 
1000 simulations. Models compared (from left to right) are the Poisson INAR(1), 

NGINAR(1), ZINGINAR(1), AR(1), and Auto-ARIMA models.

7.2.2 Evaluation of outbreak detection thresholds
In evaluating the outbreak detection thresholds derived from each of the five 

models, two characteristics are focused on – accuracy, as measured by sensitivity 
and specificity metrics, and timeliness. Presented in Table 2 are averages for 
some performance metrics reflecting the accuracy of outbreak detection for each 
model. It was shown that Poisson INAR(1) generates an alarm considerably more 
often than the NGINAR(1) and ZINGINAR(1) model and thus, has the highest 
mean sensitivity rate for all models including the ARIMA models. The trend in 
sensitivity is similar to that of false positive rates and opposite of specificities due 
to the natural trade-off between them. This particular trend is expected since the 
Poisson INAR(1) model tends to underestimate the variance from a series that 
exhibits empirical overdispersion with respect to the Poisson assumption. The 
considerable difference in the sensitivity of the Poisson INAR(1) model suggests 
that this underestimation of the variance is substantial.

For the simulated datasets, POD1 and POD2 were calculated as the proportion 
of times when the models generated an alarm at any point over the course of the 
first and second outbreak, respectively. For the first outbreak, it must be noted that 
only Poisson INAR(1) never failed to detect the first outbreak. In this aspect, the 
advantage of INAR models as compared to ARIMA is clear, as both the AR(1) 
and Auto-ARIMA algorithms exhibited less than 60% POD1.
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In comparing the detection capabilities of the five models, the sensitivity 
rate (Se) may be deemed less important than POD, particularly when the latter 
is used in conjunction with timeliness measures. While more alarms lead to 
higher sensitivity rates, the Poisson INAR(1) model, which generated the most 
alarms, only provided a Se of 45.39%, understating the results from POD1 and 
POD2 which show that the Poisson INAR(1) captures both outbreaks for all 1000 
simulations. As pointed out by Reis and Mandl (2003), one characteristic of time 
series models is that they tend to adjust to local trends in the data. This leads 
to less alarms over the course of an outbreak since cases from the past week 
are considered in determining thresholds for the following week. The advantage 
of this effect is that in a particularly severe epidemic, the algorithm would not 
generate an alarm every week. On the other hand, the disadvantage is that these 
models may not be able to detect slowly spreading outbreaks. However, similar to 
Paman et al. (2017), the INAR models fitted in this study were able to detect both 
the small and large outbreaks, and at the same time, not generating alarms every 
week, hence the low Se’s. In this sense, the NGINAR(1) model is particularly 
interesting as it exhibits a POD of 90.9% for the first outbreak while exhibiting 
about half the FPR of the Poisson INAR(1) model. 

Regarding the timeliness of detection, the Poisson INAR(1) can be clearly 
seen to be more advantageous than the other INAR models and the ARIMA 
models. This is a by-product of its high sensitivity as compared to all other 
models. Measures for timeliness are shown in Table 3.

Table 2. Outbreak detection accuracy measures for the Poisson INAR(1), 
NGINAR(1), ZINGINAR(1), AR(1) and Auto-ARIMA models (averages from 

simulated datasets)

Measures Poisson 
INAR(1)

NGI-
NAR(1)

ZINGI-
NAR(1) AR(1) Auto- 

ARIMA
alarms 55.93 28.73 19.09 14.07 15.63

Se 0.4539 0.2014 0.1738 0.1436 0.1526
Sp 0.9132 0.9507 0.9732 0.9826 0.9796

FPR 0.0866 0.0492 0.0267 0.0174 0.0204
POD1 1.0000 0.9090 0.7930 0.5450 0.5890
POD2 1.0000 1.0000 1.0000 1.0000 1.0000
PPV 0.4424 0.3830 0.5035 0.5627 0.5322
NPV 0.9181 0.8887 0.8876 0.8849 0.8857
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Table 3. Outbreak detection timeliness measures for the Poisson INAR(1), 
NGINAR(1), ZINGINAR(1), AR(1) and Auto-ARIMA models (averages from 

simulated datasets)

Measures Poisson 
INAR(1) NGINAR(1) ZINGINAR(1) AR(1) Auto- 

ARIMA
POD1wk1 0 0 0 0 0
POD1wk2 1 0.975 0.975 0.965 0.967

ATBD1 
(wks) 1.793 3.581 3.334 4.481 4.750

ATBD2 
(wks) 0 0.135 0.151 0.231 0.206

Looking at each outbreak separately, the results show that none of the models 
have successfully detected the smaller first outbreak immediately on the first 
week. However, average time before detection for the first outbreak (ATBD1) 
is 1.793 for the Poisson INAR(1) model – better than all other models. Also, it 
must be noted that the ATBDs are computed only for simulations where a model 
successfully detects an outbreak. As such, while the ZINGINAR(1) model may 
have a slightly lower ATBD1 than the NGINAR(1), it must be noted that this is 
conditional to the model detecting the outbreak, and the model’s POD1 is only 
at 79.3%. Furthermore, ARIMA models provided yet longer delays in detection 
as compared to the INAR models in times when they successfully detect the first 
outbreak which is below 60%.

For the more apparent second outbreak, while the Poisson INAR(1) model 
provided a 100% detection on the first week, the other models have all provided 
more than 95% POD1wk2, with INAR models still having some advantage over 
ARIMA models. Further probing into the delays in detecting the second outbreak 
show that if the NGINAR(1), ZINGINAR(1), AR(1), and Auto-ARIMA models 
did not detect the outbreak during the first week, then the average delays are 5.40, 
6.04, 6.60, and 6.24 weeks, respectively.

Overall, the NGINAR(1) model may be considered optimal for outbreak 
detection from the simulation results since it detects both outbreaks with POD at 
above 90% with half as many alarms generated as the Poisson INAR(1), mitigating 
FPR. This result is particularly interesting since the probability of detection and 
the probability of early detection (POD1wk) do not vastly differ from the Poisson 
INAR(1) even with about half the number of alarms and sensitivity rate. The other 
three remaining models had PODs less than 80% and the ARIMA models were 
shown to generally perform poorly in both accuracy and timeliness in detecting 
outbreaks.
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7.3 Performance evaluation with original data

7.3.1 Evaluation of point forecasts
For the original dataset, the parameter estimates for the fitted models were 

also generated through ML estimation and are summarized on Table 5. For the 
model generated through the auto.arima() function, the best ARIMA model was 
selected based on the criteria of lowest AIC (Hyndman and Khandakar, 2008). 
From the results of Table 4, it must be noted that the model identified by the 
auto.arima() procedure was an ARIMA(3,0,5) model with zero mean. This model 
is considerably less parsimonious as compared to the other four models due to 
the number of its parameters. Also, the ZINGINAR(1) model has a parameter 
estimate for π at 0.0789, which suggests that the measles series exhibits an excess 
in zeroes of only about 8% as compared to a geometric model. In terms of model 
parsimony, these two models are at a disadvantage. Simplicity is particularly 
important when dealing with data from various fields in the sense that simpler 
models are easier to explain and implement.

Table 4. Parameter estimates for the Poisson INAR(1), NGINAR(1), ZINGINAR(1), 
AR(1) and Auto-ARIMA models from the Cavite weekly measles dataset

Poisson 
INAR(1) NGINAR(1) ZINGINAR(1) AR(1) Auto-ARIMA

 (3,0,5) with zero mean

α 0.6191 α 0.6921 α 0.7266 ϕ1 0.8693 ϕ1 -0.5785 θ1 1.7563

λ 0.9344 μ 2.2517 μ 2.6579 μ 2.3963 ϕ2 0.6364 θ2 1.0066

π 0.0789 ϕ3 0.6657 θ3 -0.2688

θ4 -0.5545

θ5 -0.1660
 

Table 5. MAE, RMSE, and AIC for the actual dataset

Measures Poisson 
INAR(1) NGINAR(1) ZINGINAR(1) AR(1) Auto-ARIMA

MAE 1.6295 1.5344 1.5835 1.5109 1.6685

RMSE 4.4133 4.1798 4.3682 3.9267 3.5460

AIC 2089.7984 1292.2915 1310.2644 2330.6342 2258.6459

	
	 From Table 5, the discrepancy in terms of MAE and RMSE between the 
INAR models and ARIMA models are less pronounced for the actual dataset as 
compared to the simulated datasets. Also, similar to the results from the simulated 
datasets, the INAR models had comparable MAE and RMSE, with NGINAR(1) 
having the slight advantage over the other two.

The ARIMA (3,0,5) model generated through the auto.arima() function 
generates negative forecasts which do not reflect the non-negative nature of the 
counts being modelled. The NGINAR(1) and ZINGINAR(1) models provide 
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considerably lower AICs as compared to the Poisson INAR(1) and ARIMA 
models. For the original dataset, the NGINAR(1) model provided better AICs 
than the ZINGINAR(1), different from the results from the simulations.

Using the same models and parameter estimates, it is also of interest to look 
into the forecasts during outbreak periods are also of interest. MAE and RMSE for 
both outbreak periods are summarized in Table 6. For these comparisons, the best 
ARIMA model provided the best forecasts during both outbreak periods based 
on both MAE and RMSE. However, this model still has the limitation of giving 
negative forecasts and thus, further comparison among the remaining models 
must be done.

Among INAR models, the NGINAR(1) is consistent in providing the best 
fit. In comparing the Poisson INAR(1) with the NGINAR(1) and ZINGINAR(1) 
models, it could be observed that the latter two have comparable MAE and RMSE, 
relatively lower than the former. These results show that the models considering 
overdispersion better forecast the peaks in the series.

Table 6. MAE and RMSE for the actual dataset on outbreak periods
Poisson 
INAR(1)

NGINAR(1) ZINGI-
NAR(1)

AR(1) Auto-ARIMA

MAE (outbreak 1) 2.1476 2.1001 2.0513 2.1463 2.0352

RMSE (outbreak 1) 2.8929 2.8424 2.8486 2.8280 2.6641

MAE (outbreak 2) 7.4790 7.0281 7.1631 7.4301 6.9706

RMSE (outbreak 2) 14.6789 13.8758 14.1408 12.9237 11.1752

7.3.2 Evaluation of outbreak detection thresholds
As observed from the results from the simulations, one general characteristic 

of the detection thresholds obtained from INAR models is that they generate 
more alarms than the ARIMA models. More alarms relate to higher sensitivity, 
as well as false positive rates. Among INAR models, the order would be Poisson 
INAR(1), NGINAR(1), and then ZINGINAR(1) in terms of number of alarms and 
sensitivity as seen in Table 7. 

This trend can be explained by wider, more variable thresholds expected 
from the geometric (overdispersed) INAR models, which is shown in Figure 4. 
This finding is parallel to that of Cardinal et al. (1999), where they observed that 
forecast limits based on the empirical distribution of their meningococcal data 
were generally wider as that of the Poisson. This suggests an underestimation of 
the variance by the Poisson INAR model.

For a single dataset, POD1 and POD2 correspond to binary metrics indicating 
whether the outbreaks were successfully detected () by the model. Both 
outbreaks were successfully detected for all the models being compared.

For measures of timeliness provided in Table 8, the advantage of INAR 
models is again clear since the ARIMA models were not able to detect any of the 
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two outbreaks during the first week while all INAR models successfully detected 
the second outbreak in the first week. Furthermore, ARIMA models exhibited an 
ATBD2 of 10 weeks or about 2.5 months which is not desirable, particularly since 
this outbreak is characterized by an abrupt increase and higher number of cases. 
Poisson INAR(1) provides a slight advantage over all other models in that it can 
detect the smaller first outbreak a week earlier. 

Overall, for the original dataset, the ZINGINAR(1) model can be considered 
the optimal model among the five models compared while the NGINAR(1) model 
provided performance metrics almost similar with the former. This is explained 
first by the advantage of INAR models over ARIMA models in both accuracy 
and timeliness. The ZINGINAR(1) model also provided comparable detection 
accuracy and timeliness as compared with the Poisson INAR(1) and NGINAR(1) 
model with the least number of alarms generated, and thus, the lowest FPR.

Table 7. Outbreak detection accuracy measures for the Poisson INAR(1), 
NGINAR(1), ZINGINAR(1), AR(1) and Auto-ARIMA models

Measures Poisson 
INAR(1) NGINAR(1) ZINGINAR(1) AR(1) Auto-ARIMA

alarms 37 20 14 6 5

Se 0.4074 0.2037 0.1667 0.1111 0.0926

Sp 0.9586 0.9751 0.9862 1 1

FPR 0.0413 0.0248 0.0138 0 0

POD1 √ √ √ √ √

POD2 √ √ √ √ √

PPV 0.5946 0.5500 0.6429 1.0000 1.0000

NPV 0.9156 0.8914 0.8881 0.8829 0.8808
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Figure 4. A portion of the real series (solid line) and the detection thresholds 
generated by the Poisson INAR(1) (dotted line), NGINAR(1) (short broken line), 
and the ZINGINAR(1) (long broken line) models. The first outbreak is enclosed 

within the shaded region.
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Table 8. Outbreak detection timeliness measures for the Poisson INAR(1), 
NGINAR(1), ZINGINAR(1), AR(1) and Auto-ARIMA models from  

the actual dataset
Poisson 
INAR(1)

NGINAR(1) ZINGI-
NAR(1)

AR(1) Auto-ARI-
MA

POD1wk1 0 0 0 0 0

POD1wk2 1 1 1 0 0

ATBD1 (wks) 3 4 4 4 4

ATBD2 (wks) 0 0 0 10 10

		
8. 	 Conclusion

This study has demonstrated the applicability of INAR models, most notably, 
the newer NGINAR(1) and ZINGINAR(1) models for outbreak detection. 
The rationale of the study was to determine what improvements might these 
assumptions make in modelling and detecting outbreaks of measles. While 
the ZINGINAR(1) model has the added benefit of modelling excess zeroes as 
well, results show that the number of zeroes were not much in excess of what is 
expected from the NGINAR(1) process with the parameter hovering around 0.09 
for simulations and the real dataset. 

For the purpose of measles outbreak detection, the advantage of INAR 
models over ARIMA models is evident, mainly since the latter generally provide 
lower PODs. However, choosing an optimal model entails several factors. First of 
them is the outbreak detection capabilities of the model as measured through the 
performance metrics obtained in the results. High sensitivity is desired as well as 
low false positive rates in order to mitigate costs incurred in investigating false 
positives. Another one is the simplicity of the model – a model which effectively 
explains measles incidence and detects outbreaks with a smaller number of 
parameters is preferred over models with more parameters but provides similar 
or worse performance. A simpler model also means that its structure can be 
explained more easily to any decision-maker who would potentially use it. Lastly, 
the nature of the disease and the objectives of public health agencies is another 
factor which influences choosing the best model. Leong et al. (2015) suggests 
that diseases such as measles require systems which provide a balance between 
sensitivity and specificity as it is not a particularly deadly disease but still is of 
public health concern. 

With these factors in mind, the NGINAR(1) model may be considered the 
best among the five models compared based from both the simulations and the 
original dataset as it has comparable outbreak detection capabilities to the Poisson 
INAR(1) while having lower false positive rates. It is also simpler than the 
ZINGINAR(1) model. However, this changes if measles elimination is of utmost 
importance, to the point that investigating any rise in measles incidence must be 
done regardless of the cost, a sensitive model might be more appropriate such as 
the Poisson INAR(1). 
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9.	 Recommendations
This study had shown the applicability and the performance of NGINAR(1) 

and ZINGINAR(1) for outbreak detection. These models are relatively new 
and thus, several directions for future research may be pursued. First, different 
specifications of the INAR model may be considered in comparisons. Also, 
the NGINAR(1) and ZINGINAR(1) models may be extended to accommodate 
higher-order autocorrelation structures. The development of multivariate 
NGINAR(1) and ZINGINAR(1) models which may be used in conjunction of 
supplementary data such as vaccine coverage and syndromic data may also be 
explored. Accommodating intervention terms analogous to ARIMA intervention 
models may also be of interest to consider the effect supplemental immunization 
activities (SIA) on measles incidence.

With the recent rise in measles incidence in the Philippines, examining the 
applicability of the models to the most recent figures will be relevant. Lastly, the 
results of the study are only applicable to Cavite or a setting with similar measles 
incidence patterns as Cavite. Thus, a more complex simulation framework or a 
larger collection of disease series may be considered to test performance of the 
models in detecting outbreaks for alternative settings and also, other diseases 
However, these recommendations may be limited by the non-availability of 
appropriate data.
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