
41

Optimal Variable Subset Selection Problem in 
Regression Analysis is NP-Complete

Paolo Victor T. Redondo
School of Statistics

University of the Philippines Diliman

	
Combinatorial and optimization problems are classified into 
different complexity classes, e.g., whether an algorithm that 
efficiently solve the problem exists or a hypothesized solution to the 
problem can be quickly verified. The optimal selection of subset 
variables in regression analysis is shown to belong to a complexity 
class called NP-hard (Welch, 1982) in which solutions to the problems 
in the same class may not be easily (in terms of computing speed) 
proven optimal. Variable selection in regression analysis based 
on correlations is shown to be NP-hard, i.e., a complexity class of 
problems with easily verifiable solutions. 
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1. 	 Introduction
Despite the technological advancements in computing power, most existing 

combinatorial and optimization problems have not yet been found an efficient 
solution. This gives rise to one of the seven Millennium Problems selected by 
the Clay Mathematics Institute in 2000; the P versus NP Problem (de Figueiredo, 
2012). Suppose a decision problem, i.e., a question answerable by “yes” or “no”, 
is easily solvable. Such problem belongs to the complexity class P (polynomial 
time) where the time it takes to find the solution is simply a polynomial function 
of the size of the inputs. Consider the basic multiplication of two -digit numbers. 
Regardless of how large n is, the algorithm to efficiently solve the problem only 
requires n2 single-digit multiplications (a polynomial in ). This is considerably 
“quick” compared to some exponential functions, say 3n.  Other examples are string 
matching, number sorting and finding the maximum and minimum value  in an 
array. On the other hand, the complexity class NP (non-deterministic polynomial 
time) includes all problems that are solvable in nondeterministic polynomial time, 
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i.e., the problem cannot be answered quickly. However, NP problems are verifiable 
in polynomial time. This means that given a certain “guess” or “solution”, one can 
quickly validate its correctness. An example is the classic sudoku puzzle. Given 
a standard nxn sudoku with several entries filled, an answer to the puzzle cannot 
be easily generated. Yet given an answered sudoku, verification if the entries are 
all correct can be done quickly. Moreover, increasing the number of grids n in the 
sudoku puzzle exponentially increase computing time for finding the solution, 
thus, solvable in nondeterministic polynomial time.

Intuitively, the class P is in the class NP since problems that are easily solved 
have solutions that are easily verifiable. The converse, on the other hand, is yet 
to be proven. That is, are there problems whose answer can be quickly checked 
but requires an impossibly long time to solve by any direct method? Proving that 
all problems in class  are also in class NP will pave the way towards exploration 
of finding the most efficient one out of infinitely many possible solutions for any 
existing problem while providing evidence to its contrary blocks the opportunity 
for some problems to be efficiently solved. This concept is widely applied to 
statistical methods.

Since statistics deals with uncertainties, arriving at an optimal solution for 
a certain problem can also be viewed in the context of being in class P or NP. 
For example, Welch (1982) proved three problems from computational statistics 
belong to the class NP-Hard; cluster analysis, subset selection in regression and 
D-optimal exact design of experiments.

The paper focuses only on the optimal subset selection problem in regression 
analysis. Also, since most statisticians are not familiar with some computer science 
concepts, a brief review of terminologies is included in section II. In Section 
III, an overview of the optimal subset selection problem is presented while the 
statistical aspect to achieve NP-completeness is elaborated and is connected to 
real-life application strategies in Section IV. An illustration through simulation 
and actual data is in Section V. Lastly, implications of the problem being NP-
complete to practice are discussed in Section VI.

2. 	 Theory of NP-Completeness and NP-Hardness
What if P = NP? Then all problems we view before to be difficult become 

easy. Proofs to all theorems become trivial. There will always be an efficient 
way to look around things. Production for manufacturers can improve in speed 
with much less waste in resources. All forms of transportation can be scheduled 
optimally to move everyone and everything quicker than it used to be (Fortnow, 
2009). What a great future to look forward to given the current traffic congestion 
in EDSA!

However, most computer scientists expect the complement is true, that P ≠ 
NP, despite not having a formal proof, and believe that the millennium problem 
will still not be proven in the near future (Fortnow, 2009; D. Johnson, 2012). 
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However, not having an efficient solution to every known problem has its merits 
too. Had P = NP, public-key cryptography will become impossible. The ability 
of two parties to send secure messages to each other without exchanging private 
keys can never happen because anyone who can intercept the message can decode 
its contents (Fortnow, 2009).

Consider a decision problem is in class NP but not necessarily in class P. 
That decision problem may have no efficient solution unless NP – P is empty. In 
preparation to this, another complexity class, NP-complete, is defined. Suppose 
a problem  in class NP is “reducible” to another NP problem Y, i.e., the instance/
input x of the problem X can be transformed (polynomially) to the instance/input 
y of the problem Y such that the answer to x is “yes” if and only if the answer 
to y is “yes.” Then, the complexity class NP-complete represents the set of all 
problems X in class NP for which it is possible to quickly reduce any other NP 
problem Y to X (Wilf, 2002). This makes -complete problems to be the hardest 
problems in the class NP. The implication of NP-completeness is that once an NP-
complete decision problem is efficiently solved, then all other problems in NP will 
automatically have an efficient solution. Imagine having a single solution to all 
your problems (in NP); from the very first NP-complete problem, the satisfiability 
problem (see Cook, 1971), the recently proven NP-complete problems such as 
deciding the closure of inconsistent rooted triples (see M. Johnson, 2018) up to all 
NP problems imaginable.

Meanwhile, the complexity class NP-hard is an extension of the class NP-
complete. Any problem X is NP-hard if there is an NP-complete problem Y, such 
that Y is quickly reducible to X. Thus, the class -hard comprises of problems that 
are at least as hard as the NP-complete problems although not necessarily in  (D. 
Johnson, 2012). Not being in  means solutions to the problem are no longer easily 
verifiable. Therefore, saying a statistical problem is -hard suggests no efficient 
algorithm can find the optimal solution, and at the same time, a solution given 
may not be verified optimal. An example of such is the optimal subset selection 
problem in regression analysis, shown by Welch (1982) to be NP-hard. Thus, the 
paper exposes the statistical aspect where the optimal subset selection becomes 
NP-complete, in order to validate optimality of the common practice in choosing 
variables in regression analysis. 

3.	 Optimal Subset Selection in Regression Analysis
Consider an n x 1 data vector Y, an  design matrix X where n and k are positive 

integers. The objective of the optimal subset selection is to find a k x 1 vector β̂  
with only q nonzero elements such that q ≤ k where the residual sum of squares, 
denoted by R( β̂ ) = (Y – X β̂ )' (Y – X β̂ ), is minimized. That is, finding the 
optimal set of  variables among all  that will explain most of the variability in the 
response variable Y.
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A “yes/no” decision analogue of this is by introducing another input B and 
ask whether there exists a k x 1 vector β̂ with only q nonzero elements such that  
R( β̂ )≤ B (Welch, 1982). By polynomially transforming the Minimum Weight 
Solution to Linear Equations (MWSTLE) which is shown by Garey and Johnson 
(1979) to be NP-complete, Welch (1982) shown the subset selection problem to 
be NP-Hard.

Clearly, the problem of finding the optimal subset of variables that minimizes 
the residual sum of squares cannot be solved quickly as the number of choices k for 
the variables increases. Similarly, given a subset of q variables and a vector of β̂

estimates, verification of its correctness entails checking all possible combinations 
of variables as regressors. Mathematically, one must regress the response with sets 

comprised of single variables, of , , ,
2 3 1
k k k

k
     
     −     

  combinations of variables 

and with all variables which is a total of 2k – 1  possible scenarios. Therefore, 
the computing time exponentially increases as the k increases which is why the 
problem is viewed to be NP-hard; a problem difficult to solve with solutions not 
easily verifiable.

4. 	 Inducing NP-Completeness in Statistical Sense
Given the subset selection problem is NP-Hard, in order to find a scenario 

for the problem to be NP-complete, we need to impose conditions on which a 

provided solution is easily verifiable.  Suppose a solution β̂  is optimal, which 

implies that R( β̂ ) = (Y – X β̂ )' (Y – X β̂ ) is minimized. 

Without loss-of-generality, let the first q variables be associated with the q 

nonzero entities in β̂ . That is, for

Y = [Y1,..., Yn]',

X = [X1...Xq Xq+1...Xk] where Xj = [Xi,j] for i = 1,..., n,


1 1
ˆ ˆ ˆ ˆ[ ]q q kβ β β β+ ′=  β where

ˆ ˆ0, 1, ,  and 0, 1, ,jj q j q kβ β> ∀ = = ∀ = + 

Thus, we are interested in minimizing

R( β̂ ) = (Y – X β̂ )' (Y – X β̂ )
2 2

, ,
1 1 1 1

ˆ ˆ
qn k n

i j i j i j i j
i j i j

Y X Y Xβ β
= = = =

   
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Note that  R( β̂ ), expressed as sum of squared values, can only be minimized 
if each squared term is minimized. Hence, the minimum value of R( β̂ ) is attained 

when ( )2

,1
ˆq

i j i j ij
Y X Bβ

=
− =∑   where Bi  are some constant for all i = 1,..., n. 

Now, the minimum value of ( ) ( )
2 2

1 1 1
ˆ( ) n n n

i i ii i i
R B B ε

= = =
= = =∑ ∑ ∑β  

where .i iBε = Recall the property of the sample mean; the term ( )2

1

n
ii

X c
−

−∑  

is minimized when c is  the sample mean. Since ( )22
1 1

ˆ( ) ( ) 0n n
i ii i

R ε ε
= =

= = −∑ ∑β  

is minimized, this forces the mean of εi to be zero. Thus, for R( β̂ ) to be minimized, 

,1

q
i j i j ij

Y Xβ ε
=

= +∑  where E(εi) = 0 . In practice, we refer εi  to  as the random 

error term which by assumption in the linear regression model has three properties; 
i) independent ii) has mean zero and constant variance and iii) normally distributed 
(Montgomery, Peck and Vining, 2012). On the other hand, additional assumptions 
on the model considered by practitioners is that these error terms are also 
independent from any covariate Xj  to ensure “validity” of the model and that any 
covariate Xj is independent from another covariate Xj, where j ≠ j’ so that information 
contributed by one variable is nonredundant upon considering any other variables. 
These assumptions comprise the statistical aspect where the optimal subset 
regression problem becomes NP-complete, i.e., a solution is easily verifiable.

For the problem to be NP-complete, since it has been proven by Welch (1982) 
that the problem is NP-Hard, it suffices to show that the problem belongs in class 
NP. This means we need to show that a provided solution is easily verifiable. 
However, finding out whether a “guess” attains the minimum value for R( β̂ )
cannot be done in polynomial time. Therefore, we need to visualize another 
cost function for the “yes/no” decision analogue of the problem based on some 
relationship measure of Y and Xjs.

One of the frequently used method for searching the most appropriate 
covariates to be included in a linear regression model is the Exploratory Data 
Analysis (EDA) (Ratner, 2010). This method tries to visually find variables 
exhibiting linear relationship with the outcome variable Y. Thus, most statisticians 
incorporate variables having high correlation with their dependent variable Y in 
their model since correlation measures the strength of linear relationship between 
two continuous variables. 

We now investigate the correlation of each independent variable Xj with the 
outcome variable Y through their respective covariances. Suppose Y truly has 
linear relationship with some covariates Xjs plus some random error term with 
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mean zero such that all Xjs are independent from one another and the random error 
term ε is independent of any covariate Xj.

For Ɐ j = 1,2,…, q,

Cov(Y, Xj) = Cov (β1 X1 + … + βj Xj + … + βq Xq + ε, Xj) 

= β1 Cov(X1, Xj) + … + βjCov(Xj, Xj) + … + βqCov(Xq, Xj) + Cov(ε, Xj)

= βjVar(Xj) ≠ 0     since  Cov(Xj, Xj) = Var(Xj), 

Cov(Xj, Xj) = 0, Ɐ j′ ≠ j and Cov(ε, Xj)= 0 by assumption.

	  
On the other hand, when j = q + 1,…, k,

Cov(Y, Xj) = Cov (β1 X1 + … + βq Xq + ε, Xj)

= β1Cov(X1, Xj) + … +  βqCov(Xq, Xj) + Cov(ε, Xj) = 0

	 since Cov(Xj, Xj) = 0, Ɐ j′≠ j  and Cov(ε, Xj) = 0 by assumption.
	
		

	 But since the correlation ( , )( , )
(( ) ( )

Cov
Var Var

ρ =
Y XY X

Y X
 where the variances in 

the denominator are nonnegative, we have shown that ρ(Y, Xj) ≠ 0, Ɐj =1,…, q 
while ρ(Y, Xj) = 0, Ɐj = q + 1,…, k.  

  Hence, minimizing ( β̂ ) is similar to finding the estimate for the q nonzero 
ˆ

j sβ via those covariates X1, X2, and Xq whose correlation with the dependent 

variable is nonzero. Thus, given a “guess” on β̂ , we can verify easily if this is the 
optimal solution via checking if 1) the associated covariate s has a nonzero 
correlation with the dependent variable and 2) if the “guess” on β̂ is equal to the 
estimate under the ordinary least squares estimation which is known to minimize 
the sum of squared residuals. Hence, under the perfect scenario that Y can be truly 
expressed as  Y = β1X1 + … + βqXq + ε where E(ε) = 0 and the Xis and ε are 
independent, we have shown that the optimal subset selection problem is in class 
NP and hence, is NP-complete.

5. 	 Illustrations
To illustrate the statistical aspect discussed above, two scenarios are 

simulated; k = 3 with q = 1 and k = 5 with q = 2. For simplicity, 500 samples are 
simulated for all explanatory variables Xjs and the error term ε independently 
from a standard normal distribution.
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Table 1. Correlation of all Explanatory Variables with the Response Variable

Variables Correlation with Y P-value

X1 0.8944 3.61e-176

X2 0.0000 1.00

X3 0.0000 1.00

Table 2. Residual Sum of Squares for All Possible Combinations of Regressors

Regressing Y on  R(β̂ )
X1 499
X2 2495
X3 2495

X1 and X2 499
X1 and X3 499
X2 and X3 2495

X1, X2 and X3 499

Table 3. OLS Coefficient Estimates for All Possible Combinations of Regressors

Regressing Y on Estimated (β̂ )
X1 2.00
X2 -5.96e-16
X3 9.94e-16

X1 and X2 2.00 , -2.09e-16
X1 and X3 2.00 , 3.68e-16
X2 and X3 -5.96e-16, 1.33e-15

X1, X2 and X3 2.00 , -2.09e-16 , 3.45e-16

For the first case, suppose Y = 2X1 + ε. Note that the correlation of Y with X1 
is nonzero while correlation of Y with X2 and X3 are both zero (see Table 1). Also, 
the minimum residual sum of squares is attained when regressing Y on X1 (see 
Table 2) where X1 having the only nonzero coefficient estimate as given by the 
ordinary least squares (see Table 3).

On the other hand, for the second case, assuming Y = 2X1 – 1.5X2 + ε, the only 
correlation of Y with X1 and X2 are nonzero while correlation of Y with the rest are 
all zeroes (see Table 4). Again, the minimum residual sum of squares is attained 
when regressing Y on X1 and X2 (see Table 5) where X1 and X2 having the only 
nonzero coefficient estimates as given by the ordinary least squares (see Table 6).
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Table 4. Correlation of all Explanatory Variables with the Response Variable

Variables Correlation with Y P-value

X1 0.7428 8.24e-89

X2 -0.5571 4.21e-42

X3 0.0000 1.00

X4 0.0000 1.00

X5 0.0000 1.00

Table 5. Residual Sum of Squares for All Possible Combinations of Regressors

Regressing 
Y on R( β̂ )

Regressing 
Y on R( β̂ )

Regressing 
Y on R( β̂ )

Regressing 
Y on R( β̂ )

X1 1621.75 X1, X5 1621.75 X1, X2, X4 499 X3, X4, X5 3617.75

X2 2495 X2, X3 2495 X1, X2, X5 499 X1, X2, 
X3, X4 

499

X3 3617.75 X2, X4 2495 X1, X3, X4 1621.75 X1, X2, 
X3, X5

499

X4 3617.75 X2, X5 2495 X1, X3, X5 1621.75 X1, X2, 
X4, X5

499

X5 3617.75 X3, X4 3617.75 X1, X4, X5 1621.75 X1, X3, 
X4, X5

1621.75

X1, X2 499 X3, X5 3617.75 X2, X3, X4 2495 X2, X3, 
X4, X5

2495

X1, X3 1621.75 X4, X5 3617.75 X2, X3, X5 2495
X1, X2, X3, 

X4, X5
499

X1, X4 1621.75 X1, X2, X3 499 X2, X4, X5 2495

Table 6. OLS Coefficient Estimates for All Possible Combinations of Regressors

Regressing  
Y on Estimated ( β̂ )

Regressing  
Y on Estimated ( β̂ )

X1 2.00 X1, X2, X4 2.00 , -1.50 , 3.65e-16

X2 -1.50 X1, X2, X5 2.00 , -1.50 , 1.24e-16

X3 1.03e-15 X1, X3, X4 2.00 , -2.58e-16 , -5.37e-16

X4 1.36e-15 X1, X3, X5 2.00 , -2.58e-16 , 9.94e-16

X5 9.19e-16 X1, X4, X5 2.00 , -8.75e-16 , 1.11e-16

X1, X2 2.00 , -1.50 X2, X3, X4 -1.50 , 1.31e-15 , 2.17e-15



49

X1, X3 2.00 , -2.58e-16 X2, X3, X5 -1.50 , 1.31e-15 , -5.37e-16

X1, X4 2.00 , -8.75e-16 X2, X4, X5 -1.50 , 2.08e-15 , -7.95e-17

X1, X5 2.00 , 1.07e-15 X3, X4, X5 1.03e-15 , 1.67e-15 , 8.35e-16

X2, X3 -1.50 , 1.31e-15 X1, X2, X3, X4 2.00 , -1.50 , 2.49e-16 , 3.38e-16

X2, X4 -1.50 , 2.09e-15 X1, X2, X3, X5 2.00 , -1.50 , 2.49e-16 , 1.14e-16

X2, X5 -1.50 , -2.98e-16 X1, X2, X4, X5 2.00 , -1.50 , 3.65e-16 , 1.34e-16

X3, X4
1.03e-15 , 1.67e-

15 X1, X3, X4, X5
2.00 , -2.58e-16 , -5.367e-16 , 
1.07e-15

X3, X5
1.03e-15 , 5.17e-

16 X2, X3, X4, X5
-1.50 , 1.31e-15 , 2.17e-15 , 
-2.09e-16

X4, X5
1.36e-15 , 1.07e-

15
X1, X2, X3, X4, X5

2.00 , -1.50 , 2.49e-16 , 3.38e-16 
, 1.39e-16

X1, X2, X3
2.00 , -1.50 , 

2.49e-16

The simulation illustrates how a “solution” β̂ with only q nonzero entries can 
be easily verified to be the optimal solution. We have shown, mathematically, that 
the optimal set of q variables which accounts for the most variability present in 
the response Y are only those variables having nonzero correlation with Y. Thus, 
instead of checking all 2k – 1 possible scenarios (exponential) for the regression 
analysis, we only need to consider finding all k correlations with Y which is still 
considerably fast even for large values of k. The implication of this to practitioners 
is simple yet important. The common practice of examining correlations before 
incorporating variables in a linear regression model becomes computationally 
optimal provided that the conditions mentioned are satisfied.

6.	 Conclusions
We have shown that the optimal subset selection problem in regression 

analysis is NP-complete given that Y truly has linear relationship with covariates 
Xjs and on the random error term with mean zero assuming that the following 
conditions are satisfied: i) all Xjs are independent from one another, and; ii) 
the random error term is independent on any covariate Xj. If any of these two 
assumptions is violated, verification of the optimality of a certain “guess” will 
again require infinite amount of resources; an unwanted scenario in modelling. 
For example, if the assumption about the independence of the covariates is 
violated, multicollinearity in regression analysis arises where two variables share 
the same contribution on explaining variability in the dependent variable. This 
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could cast doubt on appropriateness of the estimated regression model given 
by the ordinary least squares estimation due to the ill-conditioned β̂ estimates 
(unstable). Also, because of the dependencies among some of the Xjs, it is possible 
to obtain more than q variables having nonzero correlation with Y which again 
makes the proposed “solution” to be nonverifiable (in polynomial time). This is 
commonly true in practice because the true relationship of the dependent variable 
with the covariates are seldom known. Nonetheless, by assuming such logical and 
practical relationship between the response and the covariates exists, practitioners 
are given more confidence in pursuing a parsimonious variable selection without 
the need to computationally exhaust all possibilities. Because when the problem 
becomes theoretically hard, it does not mean we cannot devise a technique to 
come up with a relatively good solution (Johnson, 2012).
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