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Multivariate Analysis of Variance (MANOVA) is fairly robust to the 
normality and constant variance assumptions provided that the 
data is generated from a balanced design. Issues with hypothesis-
testing arises when error-distribution is non-normal or when the 
data is generated from an unbalanced design. We propose a 
nonparametric method of testing interaction effect of the two-
factor factorial design with multivariate response and possibly 
highly unbalanced replicates. Simulation studies indicated that 
the test is correctly-sized and increasing power with increasing 
effect-size, and increasing sample size. The parametric test based 
on MANOVA is incorrectly sized with unbalanced design and error 
distribution is not normal.
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1. 	 Introduction
One of common treatment designs in experimental studies is the factorial 

design. Its most basic case is the two-factor factorial. Difficulty arises when the 
study involves more than one parameter. In particular, experiments conducted 
by the different fields in biological science include as much variables to come 
up with a solution or understanding on a certain phenomenon. One example is 
the biological composition of bacteria or cell exposed to certain types of growth 
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factor. In order to test the significance of such factors for more than one variable 
of interest, Multivariate Analysis of Variance (MANOVA) is known to be a 
powerful tool.

As in the case of the univariate Analysis of Variance (ANOVA), certain 
assumptions, such as normality are to be satisfied in MANOVA. However, we 
know that ANOVA is fairly robust to the normality assumption and homogeneity 
of variances among experimental units, provided that the design is balanced, i.e., 
we have equal sample sizes. These types of assumptions are also necessary for 
the MANOVA setting. However, there are cases where experiments have failed 
measurement or incorrect experimental set-up which results to unequal replication. 
When these phenomena occurred (i.e., unbalanced design), test for normality is 
required. This paper looked at the distortion of the variance-covariance structure, 
i.e., inducing a count realization and the unbalanced scenario, which is inevitable 
in most of uncontrolled research set-up.

This heteroscedasticity is one of the major barriers in performing two-way 
MANOVA. Xu (2015) showed theoretically and computationally that parametric 
bootstrap outperformed Lawley-Hotelling trace and approximate Hotelling 
T2 tests when the design is not balanced (i.e., unequal sizes and unequal cell 
covariance matrices). However, the test assumed symmetric distribution of errors.

Konietschke et al. (2015), on the other hand, compared the nonparametric 
bootstrap, parametric bootstrap, Walds’ and Wilk’s tests in testing interactions for 
general MANOVA. Their simulations include the setting of both symmetric and 
skewed distributions (i.e., Chi-squared distribution), as well as for balanced and 
highly unbalanced sample size allocations. Their results showed that parametric 
bootstrap had the best performance in terms of accuracy even for some skewed 
distributions. However, for cases with relatively small sample sizes (i.e., highly 
unbalanced) and negative pairing none of their tests provided good result. One 
solution that they are looking into is the permutation procedure.

In line with that, Friedrich et al. (2017) noted that in general, the Wald-type 
statistic (WTS) performs asymptotically well for the case of unequal covariance 
matrices and non-normal multivariate observations. The recent paper discussed 
correcting type-I error of small samples by the means of a permutation procedure 
through simulation studies. However, the unbalanced case for non-normal 
multivariate observations also violates the orthogonality of the MANOVA, which 
leads to inappropriate asymptotic assumptions of the WTS. 

This paper was motivated by an experiment that involved determining the 
significance of packaging and preservative to biochemical properties of pineapple 
chunks, such as oxygen, carbon dioxide and micro-bacterial counts. Before 
proceeding to the significance of two factors (packaging and preservative), it 
is important to determine if interaction effect is present among the biochemical 
properties. Hence, the focus of this paper is to propose a nonparametric approach 
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for a skewed multivariate set up, specifically the Poisson-Normal multivariate 
set-up with unbalanced case. 

To provide a better understanding of the testing procedure, we note further 
that most of the established testing procedure assumes large sample approximation 
of the distribution. However, samples gathered from an experimental set-up are 
controlled. Thus, we propose a replication procedure of the data to provide an 
evidence against the null hypothesis.

	
2. 	 Model and Hypotheses

This model adapted the data generating process of Xu (2015) for two-factor 
factorial treatment design laid out in completely randomized design but assuming 
Poisson-Normal distribution. Hence for two factors A and B with 2 levels each, 
i.e., i,j =1,2, and let n = [n11, n12, n21, n22] and ∑ij be the covariance matrices

 1/2 ;µ= +Σijk ij ij ijky e  k = 1,2,…,nij and 
αβ

µ α β
γ

= + + ij
ij i i .	

  

The yijk in this set-up is the multivariate realization from three different 
random variables (i.e., p=3), with one response having a count response and two 
normal random variates. The αi and the βi are the two treatment effects with two 
levels where α2 = ω1 * α1 and β2 = ω2 * β1. The εijni follows that of a multivariate 
Normal Distribution but induced with a Poisson Distribution generated from the 
‘PoisNor’ R package. The interaction term is a function of γ which has masking 
effect on the presence of interaction. Hence, higher value for γ means lower 
interaction effect.

The model above specifically answers hypothesis for two-factor factorial. 
This paper is only concerned with the interaction of two factors. That is, H0 (AB): 
{(P2⊗ P2⊗I3) = 0}, where P2 is the 2-dimensional centering matrix for the two 
factors (A and B) or simply H0(AB): αβij = 0.

3. 	 The Test Statistic and Nonparametric Bootstrap

Test Statistics Based on Eigenvalues
1. 	 Wilks (1932) – useful whenever the distributional assumptions are met. The 

formulation is 1
1
(1 )d

W jj
φ −

=
Λ = +∏ .

2. 	 Pillai-Bartlett trace (Pillai 1955) – Is a robust statistic for smaller sample 
sizes, unequal number of cells (treatment combinations), and unequal 

variances. The formulation is 
1

.
1

d j
PB j

j

φ
φ=

Λ =
+∑

Talento, M.S.D. et al.



4 The Philippine Statistician Vol. 68, No. 2 (2019)

3. 	 The Lawley-Hotelling trace is another statistic which is generally similar to 
Wilks ɅW.

Nonparametric bootstrap approach
Using nonparametric bootstrap (Lancaster, 2003), randomization of vectors 

will be selected independently per cell with replacement where each bootstrap 
resample is a complete set of balanced design using the minimum sample size as 
the size allocation, that is, B* = [y11, y12 , y21, y22]. 

This paper utilized the properties of Wilks statistic and observe the properties 
whenever distributional assumptions are not met. The bootstrap confidence 
interval (CI) will be constructed and whenever it does not contain 2

,pαχ which 
in this case 7.81 (p=3, number of variables), the null hypothesis is rejected. Chi-
square is used as criterion since Wilk’s ɅW  follows 2

,pαχ  and is always positive.

4. 	 Simulation Setting
In order to evaluate the test for interaction effect, first treatment effect (α1) 

will be fixed to 5 and effect of second treatment (β1) was allowed to vary. The first 
treatment has higher effect than the second treatment thus percentage contribution 
of the effect of α was fixed to have higher percentage (i.e., negative pairing). 
Konietschke et al. (2015) showed that bootstrap has low accuracy among cases 
with negative pairings, hence, this paper also assessed the level of negative 
pairings that bootstrap can tolerate. The masking parameter of interaction effect (γ) 
will also be examined as well as increasing the effect of the treatment effects. The 
sample size allocation has 4 settings for (1) equal sizes with relatively high values 
[9,9,9,9], (2) unequal sizes with relatively high values [9,9,8,7], (3) unequal sizes 
with relatively small values [5,8,5,7] and (4) highly unbalanced sizes [9,9,8,3]. 
The simulation settings are summarized in Table 1.

   Table 1. Settings of the Data for Power Analysis

βi
Effect of αi and βi 

(ω1; ω2)

Treatment interaction 

Coefficients 1
γ

 
 
 

 
    Sample sizes 

(n)

5,7,12

10%; 5%  
(slightly negative pairs)

40%; 30% 
(highly negative pairs)

0.10, 0.25, 0.50

[9,9,9,9]
[9,9,8,7]
[5,8,5,7]
[9,9,8,3]

The simulation has 500 bootstrap resamples in 250 replicates to determine 
the power and size. The probability of making a correct decision is the power of 
the test, that is P (Rej H0 | H0 is false). And the size of the test is the probability 
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of committing a Type-I error is denoted as the probability of rejecting a true null 
hypothesis, that is, P (Rej H0 | H0 is true). In evaluating the power of the test, we 
count the number of bootstrap CI not containing 2

0.05, 3pαχ = =
 whenever there is an 

interaction effect out of the 250 replicates while the evaluation of the size for the 
proposed nonparametric test is whenever the bootstrap confidence interval (CI) 
does contain the 2

0.05, 3pαχ = = .

5. 	 Results and Discussion
Table 2 shows the size of the test or the probability of rejecting true null 

hypothesis. For the proposed test, the probability of rejecting null hypothesis, 
when in fact there is no interaction, is 0 for equal sample sizes. The size of the 
proposed test is also 0 for highly unbalanced sizes, even with 3 replicates. While 
the test is correctly-sized, however, its convergence is only 99.94%. Generally, 
the proposed test is within the acceptable allowable error which is 5%. On the 
other hand, the adjusted MANOVA has inflated size of the test for case of slightly 
negative pairing or  (i.e., pertaining to effects of αi and βi). This might be due to 
the Poisson random variable which induced heteroskedasticity. The case of highly 
negative pairing or ω1 = 40% and ω2 = 25% has more conservative output. In fact, 
for β < 12, the case of equal sample sizes and case of unequal sizes with relatively 
small values have acceptable size of the test. However, majority of the cases using 
adjusted MANOVA yielded inflated size of the test.

Table 3 shows the power of the test or the probability of rejecting false null 
hypothesis when ω1  is 10% and ω2 is 5% (i.e., case of slight negative pairing). For 
both proposed test and adjusted MANOVA, the case with treatment interaction 
coefficient equal to 0.5 has ideal power (see Table 3). For the proposed test, it can 
no longer detect false null hypothesis when treatment interaction coefficient equal 
to 0.1 and β = 5 (i.e., low treatment effect) but for β = 12, all cases have relatively 
high power except for highly unbalanced case with 3 as the minimum sample size. 
Generally, adjusted MANOVA has higher power over the proposed test but based 
on Table 2, adjusted MANOVA also has higher probability of rejecting true null 
hypothesis.

Table 4 shows the power of the test or the probability of rejecting false null 
hypothesis when ω1 is 40% and ω2 is 25% (i.e., case of highly negative pairing). As 
we compare Table 3 with Table 2, highly negative pairs have more conservative 
output than that of slightly negative pairing. 

Based on Table 4, the proposed test has very low power in detecting the 
interaction effect when coefficient is set to 0.1 and when ω1 is 40% and ω2 is 25%. 
However, the power increases as treatment effect also increases. 

Generally, the case of highly unbalanced sample sizes with 3 as the minimum 
sample size (i.e., setting 4) has the lowest power among all settings and the case 
of balanced design (i.e., equal sample sizes) has the highest power. Furthermore, 
power increases as coefficient of interaction effect also increases.  
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Table 2. Size of the Proposed Test and Adjusted MANOVA for Testing the 
Interaction Effect of Two Factors with Poisson-Normal Multivariate Data.

β sample size 
allocation

10%-5% 40%-25%
convergenceproposed 

test
adjusted 

MANOVA
proposed 

test
adjusted 

MANOVA

5

setting 1 [9,9,9,9] 0 0.056* 0 0.036 100%

setting 2 [9,9,8,7] 0.004 0.06* 0.004 0.056* 100%

setting 3 [5,8,5,7] 0 0.06* 0.004 0.044 100%

setting 4 [9,9,8,3] 0 0.064* 0 0.064* 99.94%

7

setting 1 [9,9,9,9] 0 0.054* 0 0.044 100%

setting 2 [9,9,8,7] 0.004 0.06* 0.004 0.060* 100%

setting 3 [5,8,5,7] 0.005 0.06* 0.004 0.036 100%

setting 4 [9,9,8,3] 0 0.072* 0 0.072* 99.94%

12

setting 1 [9,9,9,9] 0 0.048 0 0.052* 100%

setting 2 [9,9,8,7] 0.004 0.056* 0.004 0.052* 100%

setting 3 [5,8,5,7] 0.005 0.06* 0.004 0.036 100%

setting 4 [9,9,8,3] 0 0.06* 0 0.064* 99.94%

*size of the test more than pre-set allowable error of 5%

Table 3. Power of the proposed test and adjusted MANOVA for testing the 
interaction effect of two factors with Poisson-Normal multivariate data when is  

ω1 10% and ω2 is 5%.

β sample size

coefficient

0.1 0.25 0.5

proposed 
test

adjusted 
MANOVA

proposed 
test

adjusted 
MANOVA

proposed 
test

adjusted 
MANOVA

5

[9,9,9,9] 0.24 0.744 1 1 1 1

[9,9,8,7] 0.116 0.536 1 1 1 1

 [5,8,5,7] 0.116 0.404 0.885 0.992 1 1

 [9,9,8,3] 0 0.156 0.324 0.792 1 1

7

 [9,9,9,9] 0.692 0.948 1 1 1 1

 [9,9,8,7] 0.472 0.864 1 1 1 1

 [5,8,5,7] 0.336 0.668 0.995 1 1 1

 [9,9,8,3] 0.008 0.296 0.868 0.972 1 1

12

 [9,9,9,9] 1 1 1 1 1 1

[9,9,8,7] 0.988 1 1 1 1 1

[5,8,5,7] 0.896 0.992 1 1 1 1

 [9,9,8,3] 0.24 0.756 1 1 1 1
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Table 4. Power of the Proposed Test and Adjusted MANOVA for testing the 
Interaction Effect of Two Factors with Poisson-Normal Multivariate Data  

when ω1 is 40% and ω2 is 25%

β sample size

coefficient

0.1 0.25 0.5

proposed 
test

adjusted 
MANOVA

proposed 
test

adjusted 
MANOVA

proposed 
test

adjusted 
MANOVA

5

[9,9,9,9] 0.028 0.228 0.564 0.912 1 1

[9,9,8,7] 0.012 0.152 0.348 0.792 1 1

 [5,8,5,7] 0.012 0.132 0.12 0.564 0.93 0.996

 [9,9,8,3] 0 0.063 0.004 0.256 0.384 0.82

7

 [9,9,9,9] 0.084 0.392 0.936 1 1 1

 [9,9,8,7] 0.032 0.332 0.832 0.988 1 1

 [5,8,5,7] 0.036 0.212 0.405 0.88 0.995 1

 [9,9,8,3] 0 0.084 0.056 0.496 0.904 0.988

12

 [9,9,9,9] 0.488 0.888 1 1 1 1

[9,9,8,7] 0.228 0.764 1 1 1 1

[5,8,5,7] 0.216 0.548 0.975 1 1 1

 [9,9,8,3] 0 0.236 0.688 0.936 1 1

6. 	 Application
Revenue of food industries depends on the shelf-life of their products, 

particularly those engaging in pineapple-manufacturing business. Some 
researchers are eyeing for the efficiency of 1-Methylcyclopropene (1-MCP) as 
preservative of some fruits, however, they want to determine if this preservative 
has some interaction with the type of packaging they are using (clamshell and cling 
wrap). Some biochemical properties like oxygen content and carbon content are 
some responses that might indicate the quality of pineapple. Researchers would 
also look at some growth factors like actino-bacteria (AB) - the higher the counts 
of these growth factors, the lesser the quality of the storage. These growth factors 
are known to be Poisson distributed, hence, normality and sphericity assumptions 
of usual MANOVA might not be achieved. 

One pineapple-manufacturing company in the Philippines is interested in this 
area of study. However, during their experiments, some replicates spoiled and that 
resulted to the imbalance of their experimental design. Results are reported on the 
table below.

Talento, M.S.D. et al.
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Table 5. Test of Normality and Sphericity

Response Variables Replicates
Doornik-Hansen 

test
Mauchly’s Sphericity 

test

Oxygen 9

0.0482* <0.0001*Carbon 9

AB 3

Based on Table 6, we have sufficient evidence to say that data did not come 
from multivariate normal distribution and the sphericity assumption was not 
satisfied. Hence, the proposed test and adjusted MANOVA was used in this study.

Table 6. Results of Interaction Effect test using the Proposed Test  
and the Adjusted MANOVA

Test of interaction effect Confidence Interval p-value

proposed test [14.7387, 52.3758] <0.0001*

adjusted MANOVA n/a 0.0009746*

Using the proposed test, we have sufficient evidence to say that 1-MCP has 
an interaction effect with the type of packaging.

7. 	 Conclusion and Recommendation
Theory on experimental design parametric test (F-test) requires equal 

replicates for treatment with factorial design for its robustness to normality 
assumption and orthogonality of the basis of vector space. Problem arises 
when the random variable is a count data and failure of measurement for some 
experimental unit, hence unequal replicates. Complexity of the problem upsurge 
when we have multivariate data with Poisson stochastic term. This setting will 
not only violate the normality assumption but also the sphericity of the variance-
covariance matrix. 

To test interaction effect on multivariate setting with unequal replicates, Wilk’s 
lambda was estimated through bootstrap approach and empirical distribution 
of the statistic was obtained. The function for interaction effect is ijαβ

γ
 where 

denominator masks the effect of interaction.
Graph of the data set showed parallel effect when random variable is normal 

and inherent slight interaction when it is Poisson even with no interaction present 
(Appendix 1). This might be due to nature of Poisson random variable (i.e. 
single parameter, λ), hence, difference on its mean would imply difference on the 
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variance that would result to heterogeneity of all cells and imitating behavior of 
interaction effect.

Results have shown increasing power for increasing β, holding other factors 
constant. On the other hand, power also increases for increasing interaction effect 
holding other factors constant. Also, highly negative pairing of effects decreases 
the power of the test. Generally, all size of the proposed test for cases mentioned 
are lower than or equal to 0.5%.
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Appendix

 

Appendix 1. Interaction plot of 3 dependent variables for 10% -  = 5%  
(top: , middle: ; bottom: ) and sample sizes are [5,8,5,7] 
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