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Sampling with Probability Proportional to  
Aggregate Size in Heterogeneous Populations:  

A Study of Design and Efficiency
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Sampling with probability proportional to aggregate size (PPAS) 
is compared with traditional design-unbiased sampling methods 
under different simulated population scenarios in the estimation 
of the population total. The study considered both accuracy 
and precision of the estimates in the comparison. Heterogeneous 
populations were simulated by exploring varying behaviors of an 
auxiliary variable and its relationship with the target variable. Results 
show that the optimality of estimates using PPAS sampling improve 
as the association between the target variable and auxiliary 
variable strengthens. Furthermore, PPAS sampling estimates are 
more stable under large variability in the population.
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1. 	 Introduction
Developments in sampling theory were brought by the emphasis on the use 

of auxiliary information in improving precision of estimates (Homa, Maurya, and 
Singh, 2013). Auxiliary information can be quantitative or categorical, examples 
are variables available in the register such as age, sex, and marital status. One 
approach that uses auxiliary variable is the probability proportional to size (PPS) 
sampling, a design-unbiased sampling method, where the inclusion probabilities 
π1, …, πN of the design is proportional to known, positive values x1, …, xN of an 
auxiliary variable. The PPS estimator is known to have small variance if x is 
more or less proportional to y, the target variable. However, PPS sampling was 
sometimes found to be difficult to carry out (Särndal, Swetson, and Wretman, 
1992). It is assumed that the auxiliary variables covary with the target variable, 
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and thus carry information about the target variable. Such relationship is used 
advantageously in model-based and nonparametric estimation. 

Another approach is the probability proportional to aggregate size (PPAS) 
sampling proposed by Midzuno (1952) using the unbiased ratio estimates of 
Lahiri (1951). In PPAS, the first unit is selected using PPS and the remaining 
n – 1 units are selected using simple random sampling without replacement 
(SRSWOR). Similar to PPS sampling, the variance is expected to be small when 
the auxiliary variable is proportional to the target variable. However, variance 
estimation for PPAS sampling method have been difficult in some cases. For large 
samples, Chauvet (2018) showed that the variance estimators for SRSWOR are 
also consistent for PPAS sampling. 

Gauran and Poblador (2012) used sampling with PPAS to estimate total 
production area of top cereals and root crops across Philippine regions. The 
problem of negative estimated variance was encountered, so the use of the 
nonparametric bootstrap to estimate the standard error of the estimate of the total 
was adopted in the study. The performance of estimates under PPAS sampling 
was compared to PPS sampling and SRSWOR in terms of bias and precision 
of estimates. However, the study only used observed data, and little knowledge 
was gained in understanding the flexibility of the sampling method under varying 
population characteristics and model assumptions. To do this, a simulation study 
of heterogeneous populations needs to be carried out.

This study aims to identify the population characteristics where optimality 
of estimates is achieved using PPAS sampling as compared to SRSWOR and 
probability proportional to size systemic (PPSS) sampling. Data sets were 
simulated to explore the different behavior of the population of interest in relation 
to the auxiliary variable. Comparison of estimates were made in terms of bias 
and precision. Variance estimation of estimates in PPAS sampling is done with 
nonparametric bootstrap to address the similar issue of negative estimated 
variance.

2. 	 Sampling Designs
Consider a finite population U of size  N, with a variable of interest  Y where  

yi  is the value for the unit i ∈ U. Suppose it is of interest to estimate the total  
ty = ∑i∈U yi, and for all i ∈ U a known measure xi is available in the population. If  
Y relates to X in some functional manner, X is considered as auxiliary variable or 
subsidiary variable, with tx = ∑i∈U xi.

Let pi > 0 be some probability for unit i, with ∑i∈U pi. If the probabilities are 
chosen proportional to xi, then pi =  xi / tx.. A sample S of size n is selected according 
to some sampling design with probability of inclusion πi for unit i. The Horvitz-
Thompson (HT) estimator of the total is 1

ˆ ( ).y i S it y π∈= Σ
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2.1. Probability proportional to aggregate size sampling
Lahiri (1951) and Midzuno (1952) used information from aggregated size 

measure in developing unbiased ratio estimates. In the Lahiri-Midzuno scheme a 
sample of size n is chosen by selecting the first unit i with probability proportional 
to size measure x. The other n –1 units are selected using simple random sampling 
without replacement. It is known that the first order inclusion probability πi for 
unit i and the probability of selecting a unique sample s of size n are given by
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and the variance of the estimator can then be derived 
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If y = kx, for some constant k, then
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The above result shows that efficiency of estimates relies on the proportional 
dependence of Y with the auxiliary variable X. It may be examined that optimal 
estimates can still be attained even if the relationship is not deterministic, i.e. 
y = kx + ε, where ε is a random error. It is also possible that the relationship is 
nonlinear in nature, thus the relationship is generalized by y = f (x) + ε, where f (·) 
takes possibly a non-linear form. 

The estimator of the variance of the estimate of the total can be generalized to

22
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this, however, might result to negative values, which poses a problem in variance 
estimation. 

Gauran and Poblador (2012) explored the use of the nonparametric bootstrap 
to approximate the standard error of the estimate of total production area of cereals 
and root crops in the Philippines using PPAS sampling. The proposed procedure 
fixed the problem of negative variance. It was also observed that sampling method 
PPAS produced more precise estimates for small sample sizes when compared 
to probability proportional to size (PPS) sampling and simple random sampling 
without replacement (SRSWOR). The PPAS sampling method was also found to 
produce less biased estimates than SRSWOR and PPS sampling.

2.2. Simple Random Sampling Without Replacement (SRSWOR)
With SRSWOR, each unit in the population has equal probability of being 

selected as sample. This is indicated by the inclusion probability of any unit i 
as πi = n/N. The design also assigns equal probability to each possible sample of 
size n. That is, selection probability of a sample j is P(Sj) = 1/(NCn). The unbiased 
estimator of the population total and the variance of its estimate, as shown by 
Lohr (2010), is given by:
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2.3. Probability Proportional to Size: Systematic Sampling (PPSS)
In systematic sampling with unequal probabilities, an auxiliary variable 

denoted by X is used to reformat the selection probabilities. A unit whose size 
measure is ≥ X / n is discarded from the population and included as certainty unit. 
The probability that unit i is selected as sample is given by πi = n(Xi / X), and the 
joint inclusion probability of unit i and j is πij = n(mij / X), where mij  is the number 
of random numbers that select unit i and j simultaneously. The estimate of the 
total and the estimate of the variance of this estimate is generated by the Horvitz-
Thompson estimator given by
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3. Methodology

3.1. Simulation of different populations
To evaluate the performance of PPAS estimates, a simulation study was 

conducted. Each scenario postulates a model

y = f (x) + kε,  ε ~ N(0,1) 	 (11)

For this equation, the following characteristics were made to vary: functional 
form of f (x),  variance of X, multiplier (k) on the error term, and sampling rate. 
These variations in the model aim to capture the different patterns of association 
between the target and auxiliary variable. 

Let f (x) be either linear or nonlinear function of x. The different forms of f (x) 
used in the simulation study are given by:

Linear: y = 3.2x + kε	 (12)

Quadratic: y = 8.5x – 0.1x2 + kε	 (13)

Exponential: y = 12 exp (x/20) + kε	 (14)

These different functional forms result to different population distributions. 
For instance,  f (x) that follows exponential form tend to create skewed populations 
as compared to linear and quadratic relationships. 

The coefficients of the simulated model were chosen to generate roughly 
similar population total of the response Y under across all scenarios. The auxiliary 
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variable X was randomly generated from a normal distribution with mean 50 and 
variances 5, 40, and 200. Error terms were simulated from the standard normal 
distribution. The strength of relationship was controlled by the error multiplier (k) 
set to 1, 10, 30, in the functional model. For k > 1, the errors are magnified, and the 
model fit suffers from large errors. A similar approach was used by Kwong (2011) 
in simulating the different model fit for linear and nonlinear relationships between 
the target and auxiliary variable in nonparametric model-based estimation of 
population total. 

The scenarios adopted in the simulation study aim to create heterogenous 
population characteristics where estimates of PPAS sampling are compared to 
SRSWOR and PPSS sampling estimates of the population total. The relative 
variability of the population is measured by the coefficient of variation (CV) of 
the target variable. The higher the CV value the greater the heterogeneity of the 
population. Populations with high variability often requires a larger sample which 
makes the procedure more complex and costly. Conversely, for populations with 
small CV, a smaller sample is sufficient.

3.2. Estimation of the variance of the estimated total when  
	 sampling with PPAS using the bootstrap

The bootstrap was developed by Efron (1992) inspired by earlier work on 
the Jackknife. Bootstrapping is an estimation procedure where inference about 
a population from sample data can be modelled by resampling the sample data 
and performing inference using the resample data. The new population is the 
original sample and the sampling distribution of the estimate is determined by the 
empirical distribution of the resample estimates. In surveys involving complex 
designs, the bootstrap is a common approach to variance estimation. The basic 
approach is as follows:
1.	 Observe a sample S with size n.

2.	 Compute ŝθ which estimates some model parameter θ.

3.	 For k = 1, 2, …, K, generate a bootstrap sample Sk by sampling with 
replacement from the original observed sample. 

4.	 Compute k̂θ  for each bootstrap sample Sk, in the same way the original 

estimate ŝθ was calculated.

5.	 The parameter estimate and its corresponding variance is given by 
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The standard error of the estimate of the total from PPAS sampling was 
estimated by the bootstrap method with 200 replicates/resamples.

3.3.	Evaluation of sampling for the population total with PPAS
Two evaluation measures were considered in this study: the mean absolute 

percentage difference for the accuracy of the estimator under a sampling method 
and the standard errors of the estimates for the precision of the estimates under a 
sampling method. 

For each combination of model restriction and sampling rate (1%, 5%, 10%), 
the estimate of the total and its standard error estimate were generated using 
SRSWOR and PPAS sampling. The PPSS sampling estimates were only generated 
for the 1% sampling rate. This is because size measure of units in PPSS sampling 
are more distinct when considering small samples only. For the measurement of 
the bias/accuracy of an estimate of the total, êstT , from a sampling method given 
the true total, T, the absolute percentage difference was used,  APDest (%),defined 
as:

ˆ
100−

= ⋅est
est

T TAPD
T

 	
(17)

The more accurate the estimator/better sampling method is that with the 
lower mean APDest. 

The standard error for PPAS sampling was estimated by the bootstrap 
method. For SRSWOR sampling and PPS sampling, the standard errors of the 
estimate of the total were calculated using their respective theoretical estimators. 
A sampling method with lower standard error indicates a more precise estimate 
of the population total.

4. Results and Discussion

4.1 Variation in the target variable (Y) and its association with the 
		  auxiliary variable (X) under the simulated populations

Heterogeneous populations in this study were simulated by varying population 
characteristics such as: the variability of the target variable (Y) and its strength 
and form of association with the auxiliary variable (X). For each scenario, the 
association between Y and X are examined. Pearson r correlation coefficient was 
used for linear association and Spearman rho coefficient for nonlinear monotonic 
association. 
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Tables 1 shows the CV of the population target variable resulting from each 
simulation scenario. As expected, the CV of  increase as variation in X increase 
and as (k) gets larger. Also, CVs for simulated response under a quadratic form 
f(x) are relatively lower than linear and exponential form, possibly due to the 
parabolic form of the function that restricts Y values to be scattered closely around 
the vertex (See Figure 2). Furthermore, at fixed variance of X, the association 
between X and Y weakens as the error multiplier (k) becomes larger. 

Table 1. Variability of Target Population (Y) and Correlation Across  
Varying Var(X) and k

Functional Form of  
Target Variable, 

Y=f(x)

Variance of Auxiliary 
Variable, V(X) 5 40 200

Linear: 
y = 3.2x + kε

Model Fit / Error 
Multiplier, k 1 10 30 1 10 30 1 10 30

CV(%) of Y 0.99 0.57 0.20 0.99 0.89 0.55 0.99 0.98 0.83

Quadratic: 
y = 8.5x – 0.1x2 + kε

Pearson r
(between X and Y) 0.05 0.08 0.19 0.13 0.14 0.22 0.29 0.29 0.34

CV(%) of Y 0.02 0.06 0.17 0.06 0.09 0.18 0.21 0.22 0.29

Exponential
y = 12 exp (x/20) 

+ kε

CV (%) of Y 0.99 0.85 0.46 0.98 0.96 0.82 0.91 0.91 0.89

Spearman rho, (be-
tween X and Y) 0.11 0.13 0.23 0.32 0.33 0.37 0.74 0.74 0.75

Figures 1, 2, and 3 illustrate the scatter plots of the simulated relationship 
between  and  under linear, quadratic, and exponential form, respectively. The plots 
are organized from left to right according to degree of variation of the auxiliary 
variable  and the error multiplier . As a result, scatter and scope of points are wider 
in plots (c) than (a). These forms were considered to capture different population 
characteristics that can evaluate the performance of the designs considered in the 
study. 
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Figure 1. Scatter Plots of the Target Variable  and the Auxiliary Variable  for  

(a) Var(X)=5, k = 1; (b) Var(X)=40, k=10; (c) Var(X) =200, k=30
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Figure 2. Scatter Plots of the Target Variable  and the Auxiliary Variable  for (a) 
Var(X)=5, k = 1; (b) Var(X)=40, k=10; (c) Var(X) =200, k=30

 

 

 

 

 

 

 

 

 
   

(a)                     (b)                     (c) 

 Figure 3. Scatter Plots of Target Variable  and the Auxiliary Variable   for  
(a) Var(X)=5, k = 1; (b) Var(X)=40, k=10; (c) Var(X) =200, k=30

4.2 Estimates of the total using the three sampling procedures 
The estimates of population total using SRSWOR, PPAS sampling, and PPSS 

sampling at three sampling rates are presented in Table 2. At 1% sampling rate, 
PPAS produced estimates closer to the actual population total as compared to 
SRSWOR and PPSS sampling.  But at 5% and 10% sampling rates, SRSWOR 
and PPAS sampling methods tend to produce similar estimates, and smaller bias. 
This is consistent with results of Chauvet (2018) that the two procedures are 
asymptotically equivalent in large samples. There is larger bias in PPSS estimates 
as compared to the other two procedures. This is expected, since PPSS estimates 
are known to perform better in small populations sizes with a heterogeneous 
target variable. 
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Table 2. Comparison of PPAS Sampling Estimates of the Population Total with 
those of Two Sampling Methods by Functional Form of the Target Variable (Y), by 
Variance of the Auxiliary Variable (X), and by Model Fit (k) Using Three Sampling 

Rates

f(x)
Vari-
ance 
of X

Model 
fit (k)

Population 
Total

Sampling Rate

1% 5% 10%

SRS PPAS PPSS SRS PPAS SRS PPAS

Li
ne

ar

5

1 147837 161271 147485 170657 161346 168249 161412 158816

10 147982 164068 169151 174972 161309 162486 159074 160394

30 148304 153343 160557 168162 158253 150365 158927 168373

40

1 148882 153526 159607 158304 162146 158052 163256 158427

10 149028 154631 156024 161727 164834 162171 160041 157863

30 149350 136835 156209 148391 155808 168695 163433 152567

200

1 155714 142184 158162 161583 157437 158398 162327 158133

10 155859 177099 155292 159771 154314 158111 152807 160251

30 156181 166743 160357 161727 167242 152383 162723 154797

Q
ua

dr
at

ic

5

1 174624 175970 157368 180345 174829 186288 174394 173227

10 174769 177790 188184 175275 174042 177685 174950 175865

30 175091 178207 176178 203278 173679 162476 172585 186246

40

1 171221 171139 169052 169023 169094 169530 169937 169878

10 171366 165163 167448 191130 170827 177833 172137 168607

30 171689 170342 166410 157148 167599 189831 171092 161803

200

1 155053 154876 170168 186876 151768 164432 157651 140461

10 155198 163095 175128 166911 153240 162775 164020 156763

30 155521 167908 159338 179160 152563 135691 155227 143010

Ex
po

ne
nt

ia
l

5

1 146532 148739 139062 155782 141872 152230 149967 146070

10 146677 135740 152355 137258 150095 148927 147195 146624

30 147000 144152 146586 131893 148739 139538 144002 152438

40

1 152032 135171 156837 153242 140852 150428 155424 151311

10 152177 176755 149715 160925 171407 152088 149220 152405

30 152499 142599 148782 163247 164213 152889 164784 148310

200

1 182514 111199 164746 209162 204261 170949 165332 203395

10 182659 158605 142547 179828 193319 169637 169389 181517

30 182981 140249 175103 233006 201185 198611 176594 187584

4.3 On the accuracy of the estimates of the total when sampling 	
	 with PPAS compared to two sampling methods

The absolute percent difference provides a standard measure to compare 
observed bias of estimates. Consequently, the average of these values can be taken 
for each simulation setting given by the mean APDest.



21

Table 3 shows these values across model restrictions by sampling design and 
sampling rate. In examining the values across the different forms of f(x), SRSWOR 
appears to be affected by the different functions used. It has highest bias under 
exponential form, and it has lowest bias under quadratic form. However, PPAS 
estimates do not seem to be affected by the different forms of  f(x). In contrast 
to SRSWOR estimates, sampling with PPAS gave lower bias under exponential 
form, especially at higher sampling rates. In the same manner as in Table 2, it 
can be noted that as sampling rate goes higher, the estimates of PPAS sampling 
and SRSWOR also draw closer, and bias between the two procedures is almost 
similar. PPSS sampling estimates have higher bias as compared to the other two 
procedures, and it also appears to be unaffected by the different forms of f (x). 

The mean APDest across different variance of auxiliary variable are also 
shown in Table 3. At variance  equal to 5, SRSWOR have lowest bias compared 
to the other two designs at each sampling rate. When the variance of X is set to 
40, PPAS sampling estimates show better results than the other designs across the 
different sampling rates. SRSWOR and PPAS sampling estimates show roughly 
the same bias at 10% sampling rate, once again showing the asymptotic property 
of sampling with PPAS. At 1% sampling rate, SRSWOR bias is larger than other 
designs under high variance of the auxiliary variable. PPSS sampling method also 
have better estimates under moderate variance of auxiliary variable. 

Table 3 also provide the average absolute percent difference at different error 
multiplier (k) used in simulating the models. At 5% and 10% sampling rates, PPAS 
sampling estimates have higher bias under poor model fit (k = 30). Similarly, 
sampling with PPSS also have estimates with higher bias at high model errors. 
SRSWOR estimates, on the other hand, did not exhibit any changes in bias across 
the various model fit at each sampling rate. At lower sampling rates, SRSWOR 
still have the highest bias, but as sampling rates increase, estimates of SRSWOR 
and PPAS sampling become comparable. 

Table 3. Comparison of the Mean Absolute Percentage Differences of PPAS 
Sampling Estimates of the Population Total with those of Two Sampling Methods 

Under Different Combinations of Functional Form of the Target Variable (Y), 
Variance of the Auxiliary Variable (X), and Model Fit (k) Using Three Sampling 

Rates 

Characteristic Values

Sampling Rate

1% 5% 10%

SRS PPAS PPSS SRS PPAS SRS PPAS

Functional 
Form f(x)

Linear 7.52 4.88 8.04 6.43 6.50 6.75 5.46

Quadratic 2.43 5.54 9.36 1.17 6.06 1.20 3.82

Exponential 13.36 5.83 8.90 6.90 3.76 4.13 2.44
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Variance of X

5 4.28 5.58 9.97 3.65 5.67 3.36 4.58

40 5.94 3.37 5.60 6.16 4.96 4.47 2.89

200 13.09 7.29 10.73 4.68 5.70 4.23 4.26

Model fit k

1 8.17 5.32 8.04 5.01 5.19 4.40 4.29

10 8.39 7.74 6.93 4.82 4.35 3.63 2.35

30 6.76 3.19 11.33 4.67 6.80 4.04 5.08

4.4 On the precision of the estimates of the total when sampling 	
	 with PPAS compared with sampling methods

Table 4 shows the standard errors of estimate of population total. A lower 
standard error means better precision of estimates which is valuable in any 
estimation procedure. Under the quadratic form f(x), SRSWOR consistently 
have lower standard error across different sampling rates as compared to the 
other designs. Since the quadratic form resulted to a population with the least 
variability, SRSWOR is expected to perform well under this scenario. In contrast, 
in the population generated using the exponential form, SRSWOR estimates have 
the highest standard errors as compared to the other designs, especially at 1% 
and 5% sampling rate. The exponential form mimics a skewed population, and in 
theory, estimation using SRSWOR could be disadvantageous under this scenario. 

Under the linear form of f(x), PPAS sampling estimates have remarkably low 
standard errors compared to the other designs when there is high variability in the 
population (Var (X) = 200), and the model fit is good (k = 1). And when model 
fit is poor (k = 30), standard errors of estimates when sampling with PPAS are 
noted to be higher but still better than the precision of SRSWOR estimates. Lohr 
(2010) pointed out that “if the model does not fit the data well, ratio or regression 
estimation might not increase precision for estimated means and totals”. This 
behavior, however, is no longer present in the quadratic and exponential models. 
Standard errors under the PPSS sampling generally follow the same behavior as 
PPAS sampling estimates. 

At 10% sampling rate, SRSWOR and PPAS sampling method produced 
comparable precision of estimates, with SRSWOR being slightly better under 
quadratic form of  f(x) while PPAS sampling estimates performing a little better 
at high variance of X, especially under linear and exponential form of  f(x).
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Table 4. Comparison of the Estimated Standard Errors of PPAS Sampling Estimates 
of the Population Total with those of Two Sampling Methods Under Different 

Combinations of Functional Form of Target Variable (Y), Variance of Auxiliary 
Variable (X), and Model Fit (k) Using Three Sampling Rates

f(x) Variance 
of X

Model 
fit (k)

Sampling Rate

1% 5% 10%

SRS PPAS PPSS SRS PPAS SRS PPAS

Li
ne

ar

5

1 1107.2 13756.4 10176.3 1022.0 6308.9 647.2 4072.0

10 5386.2 16740.0 15146.7 1720.6 5828.3 1205.5 4031.7

30 9815.4 12377.0 19741.8 4569.5 6885.5 2841.8 5284.5

40

1 7302.1 9839.3 6452.8 2730.1 3202.6 1751.6 2213.4

10 3351.7 7545.8 5652.6 3004.5 4804.1 2125.6 2862.8

30 12778.9 15173.7 14655.3 4772.2 6369.5 3108.2 4391.0

200

1 18823.0 304.4 262.6 5713.9 164.3 4321.4 90.9

10 15155.6 3706.5 2984.6 6222.8 1438.4 3889.9 1089.1

30 19459.2 8662.4 6666.4 6303.6 3872.3 5043.3 2681.4

Q
ua

dr
at

ic

5

1 655.6 18999.2 18583.3 477.5 8583.2 369.8 5596.4

10 4172.1 22867.7 19746.4 1302.7 7901.1 984.4 5496.7

30 10034.1 15411.7 17416.1 4092.4 8515.9 2501.5 6529.0

40

1 3339.1 22630.9 13208.0 1490.6 7376.7 1111.7 5156.8

10 5592.6 17816.2 32558.8 2437.7 10093.9 1300.8 6127.5

30 6808.9 21810.6 15779.9 4847.6 10691.7 3139.7 7368.0

200

1 9968.9 21405.2 22907.1 6009.4 9554.5 2605.9 7050.9

10 12486.1 11641.4 21923.1 5136.4 8868.5 2093.2 6173.8

30 10831.7 23997.1 29625.9 4813.7 11364.1 3903.2 6443.7

Ex
po

ne
nt

ia
l

5

1 4508.5 9160.4 5708.4 2314.4 4407.3 1549.5 2753.0

10 4316.2 11700.6 4177.5 2745.3 4051.9 1632.1 2781.4

30 11981.9 10547.3 7967.7 4009.8 5564.5 3271.9 4332.6

40

1 15385.6 2889.3 2104.5 6709.8 1277.1 5001.8 1057.8

10 32079.1 4527.4 4667.7 6534.5 2175.9 3929.4 1740.6

30 10702.0 10394.6 9773.3 9261.5 3998.1 5707.5 3543.2

200

1 14852.7 28408.8 39129.3 16439.3 11725.0 9970.2 10421.3

10 30794.5 11477.6 22029.2 33923.2 10075.5 9975.8 8564.3

30 43574.1 17101.6 41768.3 18745.2 16855.4 11819.0 9218.5

5. 	 Conclusions and Recommendations
The findings of the study are summarized as follows:
1.	 Sampling with PPAS produce more accurate estimates of the population 

total than SRSWOR at low sampling rates.
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2.	 At high sampling rates, PPAS sampling and SRSWOR tend to produce 
similar estimates in terms of bias and precision. SRSWOR being slightly 
better at low population variability and PPAS being a little better at 
skewed populations. 

3.	 Estimation under PPAS sampling works better under the linear form of 
relationship between the target variable Y and the auxiliary variable. If 
model fit is good, PPAS sampling estimates perform consistently well 
even under heterogeneity of target variable. This means that PPAS 
estimates are affected more by poor model fit between the target and 
auxiliary variable, rather than the variability in the population.

4.	 Under the exponential form of relationship between the auxiliary and 
target variable, Sampling with PPAS works best, in terms of bias and 
precision of estimates, when population variability is moderate, and the 
model fit is good. 

The findings of the study may only reflect the simulated data and may not 
necessarily be true for other random generators. It is advisable to verify these 
findings by recreating the data using different random seeds used in the study. 
Since sampling with PPSS was found to be unsuitable for this population, other 
sampling designs can be considered to facilitate better comparison. 

References
CHAUVET, G., 2018, Large sample properties of the Midzuno sampling scheme, Hal-

01882304v1. Available at: https://hal.archives-ouvertes.fr/hal-01882304/document
EFRON B., 1992, Bootstrap methods: Another look at the jackknife, In: Kotz S., Johnson 

N.L. (eds) Breakthroughs in Statistics, Springer Series in Statistics (Perspectives in 
Statistics). Springer, New York, NY.

GAURAN, I. and POBLADOR, M., 2012, Sampling with probability proportional to 
aggregate size using nonparametric bootstrap in estimating total production area of 
top cereals and root crops across Philippine regions, The Philippine Statistician, 61 
(1), pp. 87-108.

HOMA, F., MAURYA, S., and SINGH G.N., 2016, On the use of several auxiliary variables 
in estimation of current population mean in successive sampling, Communication in 
Statistics – Theory and Methods, 45 (11). 

KWONG, A.A., 2011, Nonparametric model-based predictive estimation in survey 
sampling. The Philippine Statistician, 60, pp. 1-14.

LAHIRI, D.B., 1951, A method of sample selection providing unbiased ratio estimates, 
Bulletin of the International Statistical Institute, 53, pp. 133-140.

LOHR, S., 2010, Sampling: Design and Analysis, 2nd Ed. Boston: Brooks/Cole.
MIDZUNO, H., 1952, On the sampling system with probability proportional to sum of 

sizes, Annals of the Institute of Statistical Mathematics, 3, pp. 99-107.
SÄRNDAL, C., SWENSSON, B., WRETMAN J., 1992, Model Assisted Survey 

Sampling. Springer Series in Statistics, p 201.

https://hal.archives-ouvertes.fr/hal-01882304/document

	_Hlk36035046
	_Hlk36649341
	_GoBack
	_Hlk36032979
	_Hlk36033159
	_Hlk36651042
	_Hlk36046790
	_Hlk15220206
	Contents
	Nonparametric Test of Interaction Effect for 
22-Factorial Design with Unequal Replicates: 
Case of Poisson-Normal Multivariate Data
	Mara Sherlin D. Talento
	Marcus Jude P. San Pedro
	Erniel B. Barrios 

	Sampling with Probability Proportional to 
Aggregate Size in Heterogeneous Populations: 
A Study of Design and Efficiency
	Daniel David M. Pamplona

	Comparison of Official Data Sources and Construction of a Sampling Frame for Household-based Livestock Surveys in Nueva Ecija, Philippines
	Anna Ma. Lourdes S. Latonio
	Isidoro P. David
	Zita V.J. Albacea

	Influence of Physicochemical Water Parameters 
on the Total Weight of the Slipper-shaped Oyster Crassostrea iredalei in Visayas, Philippines 
	Michelle B. Besana
	Ma. Ramela Angela C. Bermeo 
	Philip Ian P. Padilla 

	Spatio-temporal Analysis of Animal Rabies Cases in Negros Occidental, Philippines from 2012 to 2018
	Joseph L. Arbizo, Philip Ian P. Padilla, Marilyn S. Sumayo, 
Mitzi N. Meracap, Andrea Marie N. Napulan, Rex Victor V. Dolorosa, Princess Monic Q. Velasco, Leslie S. Asorio, Thea Joy A. Clarito, 
James Matthew V. Recabar, Sael D. Rodriguez 

	Rapid Assessment of Real Estate Loan Disapproval via Predictive Modeling: A Case for the Philippines
	Adrian Nicholas A. Corpuz and 
Joseph Ryan G. Lansangan

	The Impact of Basic Education Reform 
on the Educational Participation of 
16 to 17-year-old Youth in the Philippines
	Geoffrey M. Ducanes
	Dina Joan S. Ocampo

	Consumer Expectations Survey and 
Quarterly Social Weather Survey: Evidence of Convergent Validity and Causality
	Edsel L. Beja Jr.


