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Modelling the Right-Tail Conditional Expectation and 
Variance of Various Philippine Stocks Return using  
the Class of Beta Generalized Pareto Distribution

Angelo E. Marasigan
University of the Philippines Los Baños

A risk measure such as the value-at-risk (VaR) is commonly used by 
financial institution for capital management and calculation of amount of 
risk exposure against a loss. The incoherence of VaR leads to the calculation 
of conditional tail expectation (CTE) for remedy. In this study, formulas for 
the CTE and the conditional tail variance (CTV) under the class of beta 
generalized Pareto (bgP) distribution were derived. bgP is used to model 
the distribution of different scenarios of return of various Philippine stock 
indices using maximum likelihood estimation due to simulated annealing 
method with R software, and further used to compute the CTE and CTV 
of the data of returns according to the specified model. To determine 
the performance of bgP to model financial data sets, a comparison with 
its generating distributions which are the (generalized) beta and Pareto 
models were done. Finally, the method of historical simulation was also 
done and used to compute the corresponding VaR, CTE, and CTV for 
comparison to the above method of calculations.

Keywords. risk measure, Beta generalized Pareto distribution, value-at-
risk, conditional tail expectation, conditional tail variance, 
heavy-tailed

1.	 Introduction
In different areas of applied science such as hydrology, engineering science, 

and applied mathematics in finance and actuarial science, the study and application 
of risk measure are crucial. This measure associates a number that quantifies the 
intensity of loss. Specifically, for a random variable , risk measure is a mapping 
of  to a value specifying the amount of risk exposure associated with . Commonly, 
the value-at-risk (VaR), a risk measure, is used by practitioners to quantify the 
minimum amount such that only at a certain small probability that the random 
variable  exceeds that amount. But VaR fails to be a coherent measure. According 
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to Artzner et al. (1999) a coherent risk measure must satisfy four properties, 
namely, monotonicity, subadditivity, positive homogeniety, and translation 
invariance. It is by these properties that a risk measure must satisfy to become 
desirable to use. So, the conditional tail expectation (CTE) was formulated to 
remedy the incoherence of VaR. This measures the average of the random variable  
given that it exceeds VaR.

It is evident from various literatures that CTE has been extensively used to 
analyze different distribution models. For instance, Cai and Li (2005) developed 
an explicit formula of the CTE of convolutions and extreme values of dependent 
risks under a multivariate phase-type distribution. In the paper of Kim and 
Kim (2019), closed-form formula of CTE for univariate and multivariate class 
of normal mean-variance mixture were derived. An innovative expression for 
the CTE under the class of skew generalized hyperbolic family of distribution 
was formulated by Ignatieva and Landsman (2019) and further illustrated using 
the data of various stocks. Yang et al. (2015) considered studying the CTE of a 
weighted sum of regularly varying random variables, with each variable having 
dependent structure over their corresponding weights.

Another risk measure which is important in capturing the tail variability of a 
random variable is the conditional tail variance (CTV). Furman and Landsman 
(2006) argued that it is important to consider the tail variability due to its property 
of providing relevant information about the characteristic of a particular risk 
random variable. Jiang and Yang (2011) studied portfolio optimization using CTV 
and derived an explicit solution when the distribution of the portfolio is under 
a multivariate student-t distribution. Expressions for the CTV was also derived 
by Landsman et al. (2013) under the assumption of log-elliptical classes of risk. 
Under the assumption of generalized Laplace distribution and its mixture, CTV 
formulas were derived and, consequently, used for portfolio optimization by Jiang 
et al. (2016).

Apart from studying the tail characteristics of a random variable, it is also 
worthy to note its probability distribution. Development of distribution models 
has gained researchers interest because of their wide applicability and extension 
to analyze various financial, actuarial, climatic, and hydrological data sets. These 
developments are important in a way that it enhances the shape, location, and 
scale structure of a given classical distribution model to accurately fit a data set. 
Benkhelifa (2017) introduced a five-parameter model which is the beta Generalized 
Gompertz distribution and applied the model to a lifetime data of 50 devices. The 
same data set was used by Bagheri et al. (2016) to apply and study the flexibility and 
applicability of their proposed five-parameter lifetime distribution model which 
is the generalized modified Weibull power series distribution. An extension of the 
three parameter Kappa distribution which is the five-parameter Kumaraswamy 
generalized Kappa distribution was developed by Nawaz et al. (2018) and used 
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stream flow amount data set to illustrate the model. The distribution model was 
said to be more flexible in modeling highly skewed data. A new distribution 
model, which is the generalized log-Moyal distribution which gained importance 
in actuarial risk modeling, was introduced and the distributional properties was 
further developed by Bhati and Ravi (2018). In the study of Arslan et al. (2017), 
they proposed to use the generalized Lindley and power Lindley distributions as 
suitable alternatives to model wind speed data instead of Weibull distribution and 
showed that the two former distributions dominated the latter according to various 
goodness-of-fit criterion such as the root mean square error, Akaike information 
criterion and so on. The paper of Chen and Singh (2018) studied modeling of 
hydrometeorological extremes by means of deriving distribution models using 
entropy theory. By combining the gamma and generalized normal distributions, 
Cordeiro et al. (2019) formed the gamma generalized normal distribution and 
used it to model synthetic aperture radar imagery.

This paper extended the result of Mahmoudi (2011) by providing a closed-
form formulae for the CTE and CTV of the random variable developed in the 
said paper. After this, application to real data was done. In his study, the beta 
generalized Pareto distribution was introduced and argued that it is applicable 
to extreme value data due to its long tail feature. Application to real-time data 
on Philippine stock price indices was done due to known long tail behavior of 
financial data.

The paper is organized as follows: section 2 presents the beta generalized 
Pareto distributions and provides the distributional properties such as the kth raw 
moment and the quantile function. The risk measures: VaR, CTE and CTV, are 
also introduced in this section. In section 3, derivation of the CTE and CTV for 
the beta generalized Pareto random variables are shown. Application to Philippine 
stock data sets is presented also, where the beta generalized distribution model is 
compared with its generating models which are the generalized beta and generalized 
pareto distributions.  Moreover, comparison of CTE to total expectation and CTV 
to total variance are done. Further comparison to risk measures when using the 
method of historical simulation to compute VaR, CTE, and CTV is also done in 
this section. The final section concludes the paper.

2.	 Preliminaries
The first subsection is devoted to introducing the distribution model of 

generalized Pareto type with beta generator, due to their wide application in 
modeling various data which are heavy tailed in distribution. The next subsection 
introduces VaR, CTE, and CTV as risk measures. Before we proceed, the following 
notations are needed:
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Beta Function, B, and the Incomplete Beta Function, B1:

1 1 1

0
( , ) (1 ) ,a bB a b t t dt− −= −∫ 1 1
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Beta Cumulative Distribution, with parameters a and b, (; , )B a b :

1
0

( ; , )( ; , ) .
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x B t a bB x a b dt
B a b

= ∫

2.1.	The class of beta generalized pareto distribution
The beta generalized Pareto (bgP) distribution, as proposed by Mahmoudi 

(2011), is a five-parameter distribution model which is an extension of the 
generalized Pareto distribution with beta distribution generator. In his paper, the 
performance and superiority of bgP over its submodels such as generalized Pareto, 
beta Pareto, Pareto, and the three-parameter Weibull distribution were provided 
and showed its dominance over those models. 

Now, let ℝ be the set of real numbers. The following definition formally 
introduces a random variable that is bgP distributed:

Definition 2.1. A random variable X is said to be bgP distributed with 
parameters ρ, µ, ∈ ℝ  and α, β, s > 0, denoted by X ~bgP(α, β, ρ,µ, s),  if the 
probability density function (pdf) and cumulative distribution function (cdf) of X, 
respectively, are given by
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The parameters ρ, µ, and s represent the shape, location, and scale parameters. 
The additional parameters α and β measure the skewness and tail weight of the 
distribution. This study considers the case when µ = 0, and ρ > 0. According to 
Mahmoudi (2011), this implies that the domain becomes {x : 0 < x < s/ρ}. This is 
actually the effect of the location and shape parameters as described in the paper.  
And so, when referred X ~ bgP(α, β, ρ, s), the pdf and cdf, respectively, are

1111( ) 1 1 1 ,
( , )

x xf x
sB s s

αβ
ρ ρρ ρ

α β

−
−  
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The following are the properties when X ~ bgP(α, β, ρ, s):

Theorem 2.1. Let X ~ bgP(α, β, ρ, s) with pdf given by (2.3). Then the 
following hold:

The kth raw moment of X is given by

0
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and

The quantile function for X at level p, where 0 < p < 1, is given by

{ }1( ) 1 1 ( ; , ) ,sQ p B p α β
ρ

− = − −     	  (2.6)

where 1( ; , )B p α β−  is the inverse of the cumulative distribution of a beta 
distribution with parameters α and β, evaluated at p.

2.2. Notations on risk measure
As described by Klugman et al. (2019), a risk measure assigns a value in ℝ to 

a random variable describing a particular risk. For instance, VaR is a risk measure 
specifying an amount R in which the probability of a random variable X exceeding 
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R is p, for some reasonable small enough prespecified level of significance p, 
where 0 < p < 1. That is,

VaRX (p) := R + inf {r: Pr(X ≥ r) = p}	 (2.7)

But because VaR fails to satisfy the subadditivity property of a coherent risk 
measure, one may refer to a coherent risk measure which is the CTE, also known 
as Tail VaR.

CTE is defined as the average of the random variable X given that Xexceeds 
VaRX (p) That is, 

CTEX (p) := 𝔼[X : X > VaRX (p)] 	 (2.8)

As noticed, CTE considers the average over the right-tail distribution 
of X (those exceeding VaRX (p)) compared to the usual expectation 𝔼[X]. The 
importance of dealing with the right-tail is evident when the distribution of X is 
known to be right heavy-tailed.

Furman and Landsman (2006) argued that CTE is not sufficient because it 
only considers the average over the tail but not its variability. With this, they 
studied the CTV which captures the deviation of X from CTEX (p) given that it 
exceeds VaRX (p). That is,

CTEX (p): = 𝔼[X – CTEX (p)]2 : X > VaRX (p)]	 (2.9)
	
To this end, the following are some remarks regarding CTEX (p) and CTVX 

(p):
Remarks:
If the density f of some random variable  is continuous, then

( )
( )

( ) VaR p
X

xf x dx
CTE p

p

+∞

=
∫ 	 (2.10)

Expanding CTVX (p) in (2.9) yields the following formula:

CTVX (p) = 𝔼[X2 : X > VaRX (p)] – [CTEX (p)]2	  (2.11)

3.	 Results and Discussion
This section presents the closed-form formulas of the CTE and CTV of X ~ 

bgP(α, β, ρ, s). The first subsection is devoted to deriving the formula of the CTE 
followed by CTV. Application of the preceding results is presented in the next 
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subsection. Daily closing price indices of shares of stocks in SM Prime Holdings 
(SMPH), Ayala Prime Holdings (APH), and Jollibee Foods Corporation (JFC) 
from January 01 to December 31, 2020 are used to generate possible scenarios of 
daily up and down of price movements. The data were retrieved  in the website 
of Philippine Stocks Exchange, Inc. (PSEI 2020). The subsection shows how 
parameter estimation is done. The model is compared with distribution models 
such as generalized beta and generalized Pareto which are classically and 
commonly used in financial data modelling. This is followed by the comparison of 
VaR and CTE among bgP, generalized beta, and generalized Pareto. The models 
for generalized beta and generalized Pareto and their parameters are based on 
models presented in Klugman et al. (2019). Finally, the computation of CTE and 
CTV by historical simulation are compared with the values when bgP distribution 
is used.

As needed by the formulas of CTE and CTV, if X ~ bgP(α, β, ρ, s), then 
setting a level of significance  using the quantile function (2.6),  is given by
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ρ
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3.1.		 Conditional tail expectation and variance
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where 
1

( )ˆ 1 1 XVar pu
s

ρρ = − − 
 

. Equation (3.3) serves as the closed-form formula 

for the conditional tail expectation of a bgP(α, β, ρ, s) random variable.

Now, observe that
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Equation (3.5) completes the formula for the conditional tail variance of a 
bgP(α, β, ρ, s) random variable. 
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3.2.	Data description
A total of 241 historical quotes of the daily closing price indices of SM Prime 

Holdings (SMPH), Ayala Prime Holdings (APH), and Jollibee Foods Corporation 
(JFC) from January to December 2020 were considered. These 241 data points 
were used to generate 240 scenarios of possible price movement, say, from today 
to tomorrow, relative to a unit. As an example, the closing price index of SMPH 
last December 28, 2020, is 37.4, and 38.6 last December 29, 2020. This generates 
one possible of price movement scenario with a rate of return of 

38.6 37.4 0.0321
37.4

i −
= = . There is also a possibility of price movement with 

negative rate of return. Because bgP distribution only takes positive values, the 
paper instead considered the actual price movement relative to a unit which is 1 + 
i. Because 241 daily historical quotes are available: the first day for which a data 
point available is labeled as Day 0 price, second day as Day 1 price, and so on 
until the 241st day labeled as Day 240, price, then, according to what has been 
described above, the data produces 240 price movement scenarios, where the 
price movement scenario  is

Day( +1) price – Day  price1+ .
Day  price

k k
k

This generates comparable price movements of SMPH, APH, and JFC 
because the price movements are relative to whether 1 unit will increase or 
decrease by a certain amount, and not relative to the actual price. If actual prices 
are considered, there are large deviations among the prices of SMPH, APH, and 
JFC, and it is difficult to make a comparison among them. The first 20 possible 
scenarios are given in Table 1.

Table 1. Possible Price Movement Scenarios of SMPH, APH, and JFC  
(First 20 out of 240)

Scenario SMPH APH JFC   Scenario SMPH APH JFC

1 1.013 1.0078 1.0085   11 0.9767 0.934 0.9963

2 0.986 1.0116 0.9916   12 1.0063 0.9533 0.984

3 0.9953 1.0191 1.0188   13 1.005 1.0028 0.9981

4 0.9869 0.9875 0.9687   14 1.0124 1.0181 1.0124

5 1.0133 1.0057 0.9848   15 1.0025 1.0137 1.0255

6 1 1.0006 0.9981   16 1.0049 0.9973 0.9825

7 0.9774 0.9994 1.0261   17 0.9695 0.9858 0.9615

8 0.9915 0.9943 0.9717   18 1.0063 0.9856 0.9932

9 0.9926 1.0057 0.9757   19 1 1.0056 0.9833

10 1.0074 1.0107 1.0627   20 0.9725 1.0076 0.955
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3.3	 Parameter estimation
This subsection presents first the performance of bgP distribution compared 

to general distributions such as the generalized beta and generalized Pareto 
models. The performance study compares the three distribution models using 
the three data sets of SMPH, APH, and JFC, each having 240 data points, using 
maximum likelihood estimation (MLE). The comparison is based on which among 
the distribution models fits the data sets adequately according to the following 
criteria: log-likelihood value, Akaike Information Criterion (AIC), and Bayesian 
Information Criterion (BIC). The generalized beta and generalized Pareto models 
were used to generate the bgP distribution, and the comparison among the three is 
to determine whether bgP distribution is adequate to model fitting in comparison 
with its generating models (i.e., beta and Pareto, where the generalized versions 
are used) and according to the three data sets available.

As mentioned, to estimate the parameters of the three distribution models, 
maximum likelihood estimation (MLE) is used. This method requires the log-
likelihood function for the parameters of a random variable , given  data points. 
When X ~ bgP(α, β, ρ, s), Mahmoudi (2011) noted that the log-likelihood function 
L1 is given by

1
1 1

( , , , ) ( ) ln ( 1) ln(1 ) ln ln ( , ),
n n

i i
L s zi zi n s n Bα β ρ β ρ α α β

= =
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s
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. Moreover, following the density functions of generalized 

beta and generalized Pareto in Klugman et al. (2019), the loglikelihood functions 
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R software with maxLik package was used to numerically solve the estimates 
of the parameters given a data set (Henningsen and Toomet 2010). The numerical 
method employed is Simulated Annealing. Simulated annealing method does not 
use values of gradient and Hessian, but the log-likelihood function values only. 
This, in turn, is not costly in terms of the number of computations required and is 
not prone to accumulation of errors. 

Now, summarized in Table 2 are the parameter estimates, log-likelihood 
values, AIC, and BIC after implementing MLE in R.

Table 2. Summary of Model Selection Criteria under SMPH, APH,  
and JFC Data Sets

Data Distribution Parameter Estimates Log-
likelihood AIC BIC

SMPH

bgP

α = 10.8154
β = 3.5961
ρ = 1.4386
s = 1.6553

316.7297 -625.4593 -611.537

Generalized 
Beta

α = 0.62287
θ = 0.86434
γ = 22.82471
τ = 7.38277

299.7006 -591.4012 -577.479

Generalized 
Pareto

α = 41.39271
θ = 1.16684
τ = 35.66339

131.1453 -256.2906 -245.849

APH

bgP

α = 13.2891
β = 5.4293
ρ = 1.6063
s = 1.8465 

342.2455 -676.4909 -662.568

Generalized 
Beta

α = 0.68602
θ = 0.89457
γ = 22.32721
τ = 3.60564

277.6259 -547.2518 -533.329

Generalized 
Pareto

α = 33.43844
θ = 0.83673
τ = 40.22287

124.7108 -243.4216 -232.98

JFC

bgP

α = 11.6057
β = 6.7966
ρ = 2.0931
s = 2.3617

350.5477 -693.0954 -679.173

Generalized 
Beta

α = 0.62239
θ = 0.89804
γ = 23.06133
τ = 2.99245

273.1931 -538.3862 -524.464

Generalized 
Pareto

α = 39.43241
θ = 1.04334
τ = 37.92050

131.0803 -256.1607 -245.719
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It can be observed that among the models and using the three data sets, bgP 
distribution has the highest log-likelihood value, and has the lowest AIC and BIC. 
This favors bgP distribution as suitable one to model the data sets on SMPH, 
APH, and JFC compared with its underlying distributions models which is the 
generalized beta and generalized Pareto distributions.

The estimated parameters of bgP(α, β, ρ, s) with the corresponding p-values 
are summarized in Table 3. As observed, the p-values strongly suggest that the 
estimates are statistically significant. It is also worthy to note the estimates for ρ 
and s. According to how bgP model was derived, it was noted that each data point  
should not go beyond the upper limit s/ρ. The data sets for SMPH, APH, and 
JFC, respectively, have upper bounds equal to 1.1481, 1.14773, and 1.125, all of 
which are less than or equal to their respective upper limits s/ρ which are  1.1506, 
1.1495, and 1.1283. Therefore, no problem will arise when using the estimated 
parameters to calculate VaR, CTE, and CTV in describing the tail behavior of the 
given data sets.

Table 3. Parameter Estimates with Corresponding -Values
Data Parameter Estimates Standard Error -Value

SMPH

α = 10.8154
β = 3.5961
ρ = 1.4386
s = 1.6553

0.271
0.929
0.259
0.290

2 x 10-16

0.000108
2.78 x 10-8

3.04 x 10-8

APH

α = 13.2891
β = 5.4293
ρ = 1.6063
s = 1.8465

0.738
0.692
0.169
0.194

2 x 10-16

4.23 x 10-15

2 x 10-16

2 x 10-16

JFC

α = 11.6057
β = 6.7966
ρ = 2.0931
s = 2.3617

0.729
0.200
0.385
0.437

2 x 10-16

0.00201
5.6 x 10-8

6.52 x 10-8

Now, to illustrate VaR, CTE and CTV, we consider the parameter estimates 
given in Table 3. By setting p = 0.05,0.025,0.01, the result of the values of the risk 
measures are calculated and summarized in Table 4. The value of 1- p represents 
the probability of the price movements exceeding the threshold, which is VaR. 
Note that CTE considers the average overall values of the random variable under 
those values that exceed the set threshold, which is its VaR, and from the resulting 
values in Table 3, the CTEs are larger than the VaRs. Moreover, CTVs, which 
measures the average of the squared deviation of the random variable from its 
CTE given that it exceeds the VaR threshold, show that over the right-tail the data 
depicts small variability. In turn, as dictated by the CTV, the data points tend to be 
very close to the CTE. Also, there is an underestimation when it comes to using 
VaR compared to CTE.
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Table 4. Values of the Risk Measures

Data Set Risk Measure
Values

At p = 0.05 At p = 0.025 At p = 0.01

SMPH

VaR 1.1146 1.1250 1.1338

CTE 1.1263 1.1330 1.1390

CTV 6.63 x 10-5 3.30 x 10-5 1.38 x 10-5

APH

VaR 101032 1.1143 1.1245

CTE 1.1161 1.1238 1.1311

CTV 8.91 x 10-5 4.95 x 10-5 3.99 x 10-5

JFC

VaR 1.0906 1.1003 1.1092

CTE 1.1018 1.1083 1.1145

CTV 6.40 x 10-5 3.39 x 10-5 1.52 x 10-5

	

The formula for the total expectation 𝔼[X] and variance V[X] of  
bgP(α, β, ρ,µ, s) can be derived using (2.5). Doing so yields the following:

1[ ] [ ( , ) ( , )]
( , )

sX B B
B

α ρ β α β
α β ρ

 
= − + + 

 
 	 (3.6)

and

2
21[ ] [ ( , 2 ) 2 ( , ) ( , )] ( [ ]) .

( , )
sV X B B B X

B
α ρ β α ρ β α β

α β ρ
 

= + − + + − 
 

 	 (3.7)

	
By substituting the parameter estimates in Table 2 to (3.6) and (3.7), we get the 
values of the total expectation and variances summarized in Table 5.

Table 5. Values of the Total Expectation and Variance

Data Set Measure Values

SMPH
𝔼[X] 0.9849

V[X] 0.0106

APH
𝔼[X] 0.9826

V[X] 0.0086

JFC
𝔼[X] 0.9739

V[X] 0.0086
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It can be observed that 𝔼[X]s are smaller than the CTEs. Small deviations 
from the mean are also observed but, comparatively, the total variances are larger 
than the variances over the right tail, which are the CTVs. Consequently, more 
data points concentrate over the right tail that tend to be close to CTE, as evident 
from the very small values of CTV so that it is expected that the CTVs are less 
than the total variances. Furthermore, as the CTVs are smaller than the total 
variances, it means that more data points are concentrated over the CTE than over 
the total expectation and this is expected due to long tail feature of stock return 
indices as it is a financial data.

To have a mere comparison about the calculated values of VaR, CTE, and 
CTV among other models, Tables 6 and 7 summarized the values of these risk 
measures when generalized beta and generalized Pareto distributions are used. 
These distributions are commonly used to model financial data (Jockovic 2012, 
He et al. 2021, and Maddala and Rao 1996). The unavailability of closed-form 
formulas for the VaR, CTE, and CTV under generalized beta and generalized 
Pareto models led to the estimation of those values by generating 100,000 random 
seeds from those distribution models using the estimated parameters presented in 
Table 2, and using these seeds to calculate VaR, CTE, and CTV. Under generalized 
beta distribution, most of the values of VaR are less than the VaRs under bgP. 
But CTEs are mostly greater than the CTEs under bgP. When generalized Pareto 
distribution is used, it can be observed that mostly the values of VaR and CTE are 
greater than the VaRs and CTEs under bgP.

Table 6. Values of the Risk Measures under Generalized Beta

Data Set Risk Measure
Values

At p = 0.05 At p = 0.025 At p = 0.01

SMPH

VaR 1.1059 1.1236 1.1370

CTE 1.1248 1.1350 1.1425

CTV 1.44 x 10-4 4.99 x 10-5 1.08 x 10-5

APH

VaR 1.1028 1.1214 1.1360

CTE 1.1226 1.1337 1.1415

CTV 1.66 x 10-4 5.62 x 10-5 1.13 x 10-5

JFC

VaR 1.090 1.1057 1.1167

CTE 1.1062 1.1149 1.1207

CTV 1.02 x 10-4 3.08 x 10-5 5.7 x 10-6
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Table 7. Values of the Risk Measures under Generalized Pareto

Data Set Risk Measure
Values

At p = 0.05 At p = 0.025 At p = 0.01

SMPH

VaR 1.1211 1.1344 1.1424

CTE 1.1344 1.1410 1.1452

CTV 5.97 x 10-5 1.64 x 10-5 2.76 x 10-6

APH

VaR 1.1208 1.1334 1.1419

CTE 1.1339 1.1405 1.1445

CTV 5.91 x 10-5 1.55 x 10-5 2.60 x 10-6

JFC

VaR 1.1004 1.1129 1.1202

CTE 1.1129 1.1189 1.1224

CTV 4.96 x 10-5 1.23 x 10-5 1.83 x 10-6

As Hull (2017) presented, the classical way of estimating the risk measures, 
by collecting the upper  of the data points, and using these to compute the 
values of VaR, CTE, and CTV, is known as estimating by historical simulation. 
Furthermore, using this method, the computed values of VaR, CTE, and CTV are 
presented in Table 8. The values generated are relatively close to the computed 
values of VaR, CTE, and CTV under bgP model.

Table 8. Values of the Risk Measures According to Historical Simulation

Data Set Risk Measure
Values

At p = 0.05 At p = 0.025 At p = 0.01

SMPH

VaR 1.0421 1.0556 1.0705

CTE 1.0648 1.0813 1.1004

CTV 7.57 x 10-4 9.52 x 10-4 1.16 x 10-3

APH

VaR 1.0465 1.0643 1.0774

CTE 1.0716 1.0863 1.1060

CTV 6.46 x 10-4 8.7 x 10-4 8.58 x 10-4

JFC

VaR 1.0517 1.0630 1.0903

CTE 1.0751 1.0935 1.1053

CTV 4.74 x 10-4 2.54 x 10-4 1.98 x 10-4

		
		

But due to the sufficient evidence above that bgP performs well to model 
the three data sets as compared with its generating distributions such as the beta 
and Pareto, it is advantageous to calculate the risk measures using the derived 
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formulas for those measures under bgP model for ease of calculation. Moreover, 
the formulas are extendable not only with stock return data sets but those can 
also be used in other financial and actuarial data for as long as bgP is adequate to 
model the data. 

4. 	 Conclusion
This paper considered the class of generalized Pareto distribution with 

beta distribution generator. Formulas for the raw moments and quantile 
function were provided under bgP model which are helpful in determining 
some important properties (i.e., expectation, variance, skewness, kurtosis.) An 
important application of the quantile function is the calculation of VaR which 
was also introduced in the paper. Consequently, the formulas for CTE and CTV 
of a random variable which is bgP distributed were provided. Application of the 
CTE and CTV to a real-time financial data and further comparison with the VaR, 
CTE, and CTV computed using the classical technique of historical simulation 
concluded the paper.
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