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The ridge estimator has been consistently demonstrated to be an 
attractive shrinkage method to reduce the effects of multicollinearity. The 
logistic regression model is a well-known model in application when the 
response variable is binary data. However, it is known that multicollinearity 
negatively affects the variance of maximum likelihood estimator of the 
logistic regression coefficients. To address this problem, a logistic ridge 
regression model has been proposed by numerous researchers. In this 
paper, a modified logistic ridge estimator (MLRE) is proposed and derived. 
The idea behind the MLRE is to get diagonal matrix with small values of 
diagonal elements that leading to decrease the shrinkage parameter and, 
therefore, the resultant estimator can be better with small amount of bias. 
Our Monte Carlo simulation results suggest that the MLRE estimator can 
bring significant improvement relative to other existing estimators. 
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I. 	 Introduction
Logistic regression model is widely applied for studying several real data 

problems, such as in medicine (Algamal and Lee 2015a). In dealing with the 
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logistic regression model, it is assumed that there is no correlation among the 
explanatory variables. In practice, however, this assumption often not holds, which 
leads to the problem of multicollinearity. In the presence of multicollinearity, 
when estimating the regression coefficients for logistic regression model using the 
maximum likelihood (ML) method, the estimated coefficients are usually become 
unstable with a high variance, and therefore low statistical significance (Kibria 
et al. 2015). Numerous remedial methods have been proposed to overcome the 
problem of multicollinearity. The ridge regression method (Hoerl and Kennard 
1970) has been consistently demonstrated to be an attractive and alternative to the 
ML estimation method.

Ridge regression is a shrinkage method that shrinks all regression coefficients 
toward zero to reduce the large variance (Asar and Genç 2015; Rashad and 
Algamal 2019). This is done by adding a positive amount to the diagonal of XTX. 
As a result, the ridge estimator is biased but it guaranties a smaller mean squared 
error than the ML estimator.  

In linear regression, the ridge estimator is defined as

1ˆ ( ) ,T T
Ridge k −= +X X I X yβ 	 (1)

where y is an n x 1 vector of observations of the response variable, X = (x1 ,…, xp) 
is an n x p known design matrix of explanatory variables, β = (β1,…, βp) is a p x 1 
vector of unknown regression coefficients, I is the identity matrix with dimension 
p x p, and k ≥ 0 represents the ridge parameter (shrinkage parameter). The ridge 
parameter, k, controls the shrinkage of β toward zero. The OLS estimator can be 
considered as a special estimator from Eq. (1) with k = 0. For larger value of k, the 
ˆ

Ridgeβ estimator yields greater shrinkage approaching zero (Algamal and Lee 
2015b; Hoerl and Kennard 1970). 

2. 	 Logistic Ridge Regression Model
Logistic regression is a statistical method to model a binary classification 

problem. The regression function has a nonlinear relation with the linear 
combination of the variables. In binary classification, the response variable of the 
logistic regression has two values either 1 for the tumor class, or 0 for the normal 
class. Let yi ∈ {0,1} be a vector of size n x 1 of tissues, and let xj be a p x 1 vector 
of variables. The logistic transformation of the vector of probability estimates  
πi = p(yi = 1|xj) is modeled by a linear function, logit transformation, 
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where β0 is the intercept, and βj is a p x 1 vector of unknown variable coefficients. 
The log-likelihood function of Eq. (1) is defined as
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Logistic regression offers the advantage of simultaneously estimating the 
probabilities π(xij) and 1–π(xij) for each class and classifying subjects. The 
probability of classifying the ith sample in class 1 is estimated by 
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∑ ∑x x  (Algamal and Lee 2017; 

Algamal and Lee 2018; Algamal et al. 2017). The predicted class is then obtained 
by { }ˆ 0.5 ,iI π >  where I(•) is an indicator function. The ML estimator is then 
obtained by computing the first derivative of the Eq. (2) and setting it equal to 
zero. Then, ML estimators of the logistic regression parameters (LRM) as 

	
1ˆ ˆ ˆ ˆ( ) ,T T

LRM
−= X WX X Wvβ 	 (4)

where ˆˆ diag( )iθ=W  and v̂  is a vector where ith element equals to logit link 
function. The ML estimator is asymptotically normally distributed with a 
covariance matrix that corresponds to the inverse of the Hessian matrix
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The mean squared error (MSE) of Eq. (5) can be obtained as
ˆ ˆ ˆ ˆ ˆMSE( ) ( ) ( )T

LRM LRM LRME= − −β β β β β

                    1ˆ( )Ttr − =  X WX
	

(6)	
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where λj is the eigenvalue of the ˆTX WX  matrix. 

In the presence of multicollinearity, the matrix ˆTX WX  becomes ill-
conditioned leading to high variance and instability of the ML estimator of the 
Poisson regression parameters (Algamal 2018a; Algamal 2018b; Algamal and 
Alanaz 2018; Algamal and Asar 2018; Alkhateeb and Algamal 2020; Yahya 
Algamal 2018). As a remedy, Schaefer et al. (1984) proposed the logistic ridge 
regression model (LRRM) as
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1ˆ ˆˆ ˆ( )T T
LRRM LRMk −= X WX + I X WXβ β

          
1ˆ ˆ ˆ( )T Tk −= X WX + I X Wv,

	
(7)

where k ≥ 0. The ML estimator can be considered as a special estimator from Eq. 

(7) with k = 0. Regardless of k value, the MSE of the ˆ
LRRMβ  is smaller than that of 

ˆ
LRMβ because the MSE of ˆ

LRRMβ is equal to (Asar et al. 2017; Asar and Genç 2015; 
Kibria et al. 2012; Lukman et al. 2020; Månsson et al. 2011; Schaefer et al. 1984; 
Wu et al. 2016)
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where αj is defined as the jth element of ˆ
LRMγβ and γ is the eigenvector of the 

ˆTX WX matrix. Comparing with the MSE of Eq. (6), ˆMSE )LRRM(β  is always 
small for k > 0.

3. 	 The New Estimator
In this section, the new estimator is introduced and derived. Let  

M = (m1, m2,…, mp) and Λ = diag (λ1, λ2, …, λp), respectively, “be the matrices of 
eigenvectors and eigenvalues of the ˆTX WX  matrix, such that  

ˆ ˆ ,T T T ΛM X WXM = S WS = where S = XM. Consequently, the logistic regression 

estimator of Eq. (4), ˆ
LRMβ , can be written as

1 ˆˆ ˆ
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Accordingly, the logistic ridge estimator, ˆ
LRRMβ , is rewritten as

1
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 	 (10)

where D = Λ + K and K = diag(k1, k2, …, kp); ki ≥ 0, i = 1,2, …, p. 
In generalized ridge estimator, the Jackknifing approach was used (Khurana 

et al. 2014; Nyquist 1988; Singh et al. 1986). Batah et al. (2008) proposed a 
modified Jackknifed ridge regression estimator in linear regression model. 

In this paper, the modified estimator (MLRE) is derived by following the 
study of Batah et al. (2008). Let the Jackknife estimator (JE), in logistic regression, 
defined as 
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2 2ˆ ˆ( ) ,JE LRM
−= −I K Dγ γ 	  (11)

and the modified Jackknife estimator (MJE) of  Batah et al. (2008), in logistic 
regression model, is defined as

1 2ˆ ˆ( )( ) .MJE LRM
− −= − − 2I KD I K Dγ γ 	 (12)

Consequently, our modified estimator is an improvement of Eq. (12) by 
multiplying it with the amount [(I–K3D-3) / (I–K2D-2). The idea behind this is 
to get diagonal matrix with small values of diagonal elements which leading to 
decrease the shrinkage parameter, and, therefore, the resultant estimator can be 
better with small amount of bias. The new estimator is defined as 

3 3
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and 

ˆ ˆ .T
MLRE MLRE= Mβ γ 	 (14)

4.	 Bias, Variance, and MSE of the New Estimator
The MSE of the new estimator can be obtained as

[ ]2ˆ ˆ ˆMSE( ) var( ) bias( )MLRE MLRE MLRE= +γ γ γ 	
(15)
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Then, 
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where Φ = (I – K3D-3)T (I – KD-1) and Ψ = [I + KD-1 – KD-3K].

2.7. Selection of parameter k 
The efficiency of ridge estimator strongly depends on appropriately choosing 

the k parameter. To estimate the values of k for our new estimator, the most well-
known used estimation methods are employed and are given below (Kibria et al. 
2015). 

1. Hoerl and Kennard (1970) (HK), which is defined as 
2
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2. Kibria et al. (2015) (KMS1), which is defined as
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5. 	 Simulation Study 
In this section, a Monte Carlo simulation experiment is used to examine the 

performance of the new estimator with different degrees of multicollinearity. 
The response variable of n observations is generated from Bernoulli 

distribution regression model by 

exp( ) ,
1 exp( )

T
i

i T
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+

x
x
β

β 	 (22)

where  β = (β0, β1,…, βp) with 2

1
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p

j
j

β
=

=∑  and β1 = β2  = …, = βp (Kibria 2003; 

Månsson and Shukur 2011).
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The explanatory variables xi
T = (xi1, xi2,…, xin), have been generated from the 

following formula 
xij = (1– ρ2)1/2 wij + ρwip, i = 1, 2,…, n,  j = 1,2,…, p,                             (23)

where ρ represents the correlation between the explanatory variables and wij’s 
are independent standard normal pseudo-random numbers. Because the sample 
size has direct impact on the prediction accuracy, three representative values of 
the sample size are considered: 30, 50 and 100. In addition, the number of the 
explanatory variables is considered as p = 4 and p = 8 because increasing the number 
of explanatory variables can lead to increase the MSE. Further, because we are 
interested in the effect of multicollinearity, in which the degrees of correlation are 
considered more important, three values of the pairwise correlation are considered 
with ρ = {0.90,0.95,0.99). For a combination of these different values of n, p, and 
ρ, the generated data is repeated 1000 times and the averaged mean squared errors 
(MSE) is calculated as 

	
1000

1

1ˆ ˆ ˆMSE( ) ( ) ( ),
1000

T

i=
= ∑β β − β β − β  	 (23)

where β̂ is the estimated coefficients for the used estimator.  

6. 	 Simulation Results
The estimated MSE of Eq. (24) for MLE, LRM, and MLRE, for all the 

different selection methods of k and the combination of n, p, and ρ, are summarized 
in Tables 1, 2, and 3, respectively. Several observations can be made.  

First, in terms of ρ values, there is increasing in the MSE values when the 
correlation degree increases regardless of the value of n, p. However, MLRE 
performs better than LRM and MLE for all the different selection methods of k. 
For instance, in Table 1, when p = 8  and ρ = 0.99, the MSE of MLRE was about 
4.38%, 3.13%, and 2.86% lower than that of LRM for KH, KMS1 and KMS2, 
respectively. In addition, the MSE of MLRE was about 53.51% lower than that 
of MLE.

Second, regarding the number of explanatory variables, it is easily seen that 
there is increasing in the MSE values when the p increasing from four variables 
to eight variables. Although this increasing can affect the quality of an estimator, 
MLRE is achieved the lowest MSE comparing with MLE and LRM, for different 
n, p and different selection methods of k. 

Third, with respect to the value of n, the MSE values decrease when n 
increases, regardless of the value of ρ, p, and the value of k. However, MLRE still 
consistently outperforms LRM and MLE by providing the lowest MSE.  

M. Alanaz et al. 
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Finally, for the different selection methods of k, the performance of all methods 
suggesting that the MLRE estimator is better than the other two estimators used. 
The KMS1 efficiently provides less MSE comparing with the KMS1 and KH for 
both MLRE and LRM estimators. Besides, KH is more efficient for providing less 
MSE than KMS2 or both MLRE and LRM estimators.

To summarize, all the considered values of n, p, ρ, and the value of k, MLRE 
is superior to LRM, clearly indicating that the new proposed estimator is more 
efficient.

Table 1. MSE values when n = 30 
KH KMS1 KMS2

ρ MLE LRM MLRE LRM MLRE LRM MLRE

p = 4

0.90 6.367 2.406 2.253 2.046 1.945 2.791 2.691

0.95 6.995 2.637 2.486 2.495 2.394 2.952 2.849

0.99 7.393 3.287 3.135 3.027 2.926 3.296 3.195

p = 8

0.90 6.472 2.608 2.455 2.238 2.137 2.986 2.885

0.95 7.091 2.839 2.686 2.687 2.586 3.145 3.044

0.99 7.506 3.489 3.336 3.219 3.118 3.491 3.391
	

Table 2. MSE values when n = 50 
KH KMS1 KMS2

ρ MLE LRM MLRE LRM MLRE LRM MLRE

p = 4

0.90 6.04 2.079 1.926 1.719 1.618 2.464 2.363

0.95 6.668 2.312 2.159 2.168 2.067 2.623 2.522

0.99 7.066 2.962 2.808 2.711 2.599 2.969 2.868

p = 8

0.90 6.145 2.281 2.128 1.911 1.811 2.659 2.558

0.95 6.764 2.512 2.359 2.362 2.259 2.818 2.717

0.99 7.179 3.162 3.009 2.892 2.791 3.164 3.063
	

Table 3. MSE values when n = 100
KH KMS1 KMS2

ρ MLE LRM MLRE LRM MLRE LRM MLRE

p = 4

0.90 5.628 1.667 1.514 1.307 1.206 2.052 1.951

0.95 6.256 1.898 1.747 1.756 1.655 2.211 2.112

0.99 6.654 2.548 2.396 2.288 2.187 2.557 2.456

p = 8

0.90 5.733 1.869 1.716 1.499 1.398 2.247 2.146

0.95 6.352 2.141 1.947 1.948 1.847 2.406 2.305

0.99 6.767 2.751 2.597 2.481 2.379 2.752 2.651
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7. 	 Conclusion
In this paper, a modified estimator of logistic ridge regression is proposed 

to overcome the multicollinearity problem in the logistic regression model. 
According to Monte Carlo simulation studies, the modified estimator has a better 
performance than the maximum likelihood estimator and ordinary logistic ridge 
estimator, in terms of MSE. In conclusion, the use of the modified estimator is 
recommended when multicollinearity is present in the logistic regression model.
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