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This paper proposes two new tests for tail independence in extreme 
value models. We use the conditional distribution function (df) of X + Y, 
given that X + Y  > c based approach of Falk and Michel to test for tail 
independence in extreme value models. We recommend using Cramer-
von Mises and Anderson-Darling tests for tail independence. Simulations 
show that the two tests are better than the Kolmogorov-Smirnov test 
which has good results among the proposed tests by Falk and Michel. 
Finally, by using two real datasets, we illustrate the application of the two 
proposed tests as well as the traditional tests of Falk and Michel.
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1. 	 Introduction
Tail dependence describes the amount of dependence in the tail of a bivariate 

distribution. In other words, tail dependence refers to the degree of dependence 
in the corner of the lower-left quadrant or upper-right quadrant of a bivariate 
distribution. Definitions of tail dependence for multivariate random vectors are 
mostly related to their bivariate marginal df’s. Geffroy (1958, 1959) and Sibuya 
(1960) independently introduced the quantity 
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where 1
XF −  and 1

YF −   are quasi-inverses of FX and FY respectively. This quantity 
is called the upper tail dependence coefficient provided the limit exists, which is 
displayed for simplicity as TDC. We say that (X, Y) has upper tail dependence if 
λu > 0 and upper tail independent or asymptotically independent if λu = 0. Loosely 
speaking, tail dependence describes the limiting proportion that one margin 
exceeds a certain threshold given that the other margin has already exceeded that 
threshold. Several empirical surveys such as An’e and Kharoubi (2003) and 
Malevergne and Sornette (2004) exhibited that the concept of tail dependence is a 
useful tool to describe the dependence between extremal data. The TDC can also 
be defined via the notion of copula. The copula function C(u,v)

 
is a bivariate df 

with  uniform  marginals  on [0,1], such that F(x,y) = C(FX(x), FY(y). By Sklar’s 
Theorem (Sklar, 1959), this copula exists and is unique if FX  and FY  are continuous. 
Also, the copula C is given by 1 1( , ) ( ( ), ( )), , [0,1]X YC u v F F u F v u v− −= ∀ ∈  (for 
more details, see Nelsen, 2006). If C(u,v) is the copula of (X, Y), then
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See Coles et al. (1999). Frahm et al. (2005) introduced estimators for 
TDC under various assumptions: using a specific distribution, within a class of 
distributions, using a specific copula function, and within a class of copulas or a 
nonparametric estimation (without any parametric assumption). 

In this paper we restrict our attention to extreme value copulas, i.e., a copula 
C such that 

2( )( , ) exp ( ) , , [0,1] , (1)
( )

log vC u v log uv A u v
log uv

  
= ∈  

  
	 (1)

where, A:[0,1] → [1/2,1] is the Pickands dependence function (Pickands 1981). 
This function is absolutely continuous and convex, satisfies A(0) = A(1) = 1, and 
its derivative has values between –1 and 1. When A(t) = 1, Equation (1) yields 
independence and when in Equation (1) we choose A(t) = max{t, 1–t}, then 
complete dependence obtain. These copulas are useful to model componentwise 
maxima.

Let (X,Y) be a random vector (rv) with values in (-∞,0)2, whose df H(x, y) 
coincides, for x, y ≤ 0 close to 0, with a max-stable or extreme value df (EV) G 
with reverse exponential margins, i.e.,

G (x, 0) = G (0, x) = exp(x),   x ≤ 0, 	 (2)
and
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Suppose that (X1,Y1),…, (Xn,Yn) are independent copies of (X,Y). If diagnostic 
checks of (X1,Y1),…, (Xn,Yn) suggest X,Y to be independent in their upper tail, then 
modeling with dependencies leads to the over estimation of probabilities of extreme 
joint events. Some inference problems caused by model mis-specification are, for 
example, discussed in Dupuis and Tawn (2001). Testing for tail independence is, 
therefore, mandatory in a data analysis of extreme values.

Falk and Michel (2006) showed that the conditional df of X + Y, given that  
X + Y > c, has a limiting df F(t) = t2, t ∈[0,1], as c ↑ 0 if and only if X, Y are 
tail independent. Otherwise, the limiting df is uniform distribution on‌ [0,1], i.e.,  
F(t) = t, t ∈[0,1]. This result will be utilized to define tests for the tail independence 
of X, Y which are suggested by the Neyman-Pearson lemma as well as via the 
goodness-of-fit tests that are based on Fisher’s κ, on the Kolmogorov-Smirnov 
test as well as on the chi-square goodness-of-fit test, applied to the exceedances 
Xi + Yi > c in the sample (X1,Y1),…, (Xn,Yn). Using this approach we recommend 
Cramer-von Mises and Anderson-Darling tests for tail independence. 

The organization of the paper is as follows. The next section briefly presents 
the approach of Falk and Michel (2006) and then expresses their tests for tail 
independence in extreme value models. Also, we introduce the two proposed 
tests based on the Cramer-von Mises and Anderson-Darling statistics. Section 
3 compares the size and power of the proposed tests as well as the traditional 
tests for tail independence using Monte Carlo experiments. In Section 4, all tests 
mentioned in Section 2, are implemented on two real datasets. Finally, conclusions 
are given in the last section. In this paper, for computation and simulation, we use 
the R statistical software.

2. 	 Tail Independence Tests
In the following, we assume that the rv (X, Y) has a df H(x,y), which coincides, 

for x, y ≤ 0 close to 0, with a max-stable or extreme value df (EV) G with reverse 
exponential margins (Equation (2)). The following theorem from Falk and Michel 
(2006) is the basis of the tail independence tests in this paper.

Theorem 1. We have uniformly for t ∈ [0,1] as c ↑ 0 as 
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Based on this theorem, Falk and Michel (2006) introduced four tests for tail 
independence in extreme value models, which can be grouped into two different 
classes: one based on Neyman-Pearson lemma and the other tests based on 
Fisher’s κ , Kolmogorov-Smirnov and chi-square goodness-of-fit tests. These 
tests are presented below.

 2.1.	 Proposed tests by Falk and Michel
Suppose that (X1,Y1),…, (Xn,Yn) are independent copies of (X,Y). Fix c < 0 and 

consider only those observations Xi,Yi among the sample that satisfy Xi + Yi > c. 
Denote these by C1, C2,…, CK(n) in the order of their outcome. If c is large enough, 
then Ci / c, i = 1, 2,… are iid with a common df Fc and are independent of K(n), 
which is binomial B(n, q) distributed with q = 1–(1– c)exp(c).

Neyman-Pearson Test.  The first test Falk and Michel (2006) introduced is 
based on Neyman-Pearson lemma. We have to decide, roughly, whether the df 
of Vi  := Ci / c, i = 1, 2,… is equal to either the null hypothesis F(0)(t) = t2 or the 
alternative F(1)(t) = t, 0 ≤ t ≤ 1. Assuming that these approximations of the df of  
Vi :=Ci / c are exact and that K(n) = m > 0, the optimal test for testing F(0) against 
F(1) is based on the loglikelihood ratio

11
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if m is large enough, the p-value of this test obtained by using the central limit 
theorem, that is equal to
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where Φ denotes the df of the standard normal distribution.
The other three tests of Falk and Michel (2006) are goodness-of-fit tests 

based on Ci / c. 
Fisher’s κ Test.  Conditioning on K(n) = m > 0, we consider the rvs

1 (1 )exp( ): ( / ) , 1, , ,
1 (1 )exp( )

i i
i c i

C CU F C c i m
c c

− −
= = = …

− −

if X and Y are tail independent and c is close to 0, according to Theorem 1, rvs  
Ui (i=1,…,m) are iid from uniform distribution on (0,1). Consider the 
corresponding order statistics U1:m ≤ …≤ Um:m and define

Sj := Uj:m – Uj-1:m,    j = 2,…,m,
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and let S1 = U1:m, Sm+1 = 1 – Um:m. Suppose that

Mm := max1≤j≤m+1Sj,

then, the Fisher’s κ test statistic is

κm := (m+1) Mm.

A table of the critical values of Fisher’s κ test is given in Fuller (1976). The 
p-value of this test is equal to

1 1: 1 1 ( ),
1

m
m m mp G G M
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κ
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where
1

1
0

1
( ) ( 1) (max(0,1 )) , 0.

m
j m

m
j

m
G x jx x

j

+

+
=

+ 
= − − > 

 
∑

Kolmogorov-Smirnov Test.  Conditioning on K(n) = m > 0, we can apply the 

Kolmogorov-Smirnov test to rvs Ui (i =1,…,m). Denote [0, ]
1

1ˆ ( ) : ( )
m

m t i
i

F t I U
m =

= ∑  

be the empirical df of rvs Ui (i =1,…,m), then the Kolmogorov-Smirnov statistic 
is

1/2

[0,1]
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t

T m F t t
∈

= −

The approximate p-value of Kolmogorov-Smirnov test is equal to

pKS := 1–K(TKS),

where K is the df of the Kolmogorov distribution.
Chi-square Test. Conditioning on K(n) = m > 0, we can apply the chi-square 

goodness-of-fit test to rvs Ui (i =1,…,m). For this purpose, we divide the interval 
[0,1] into k consecutive and disjoint intervals I1, …, Ik and consider the chi-square 
statistic
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where mi is the number of observations among U1,…,Um that fall into the interval 
Ii and pi is the length of Ii,1 ≤ I ≤ k. If m is large, such that for all i = 1,…, k we 

have mpi > 5, then the statistic 
2

,m kχ  have chi-square distribution with k–1 degrees 

M.B. Ghalibaf



66 The Philippine Statistician Vol. 70, No. 2 (2021)

of freedom. Therefore, the approximate p-value of this test is equal to

2
2 2

1 ,: 1 ( ).k m kp
χ

χ χ−= −

2.2. The proposed tests
Based on Theorem 1 from Falk and Michel (2006) we propose two new tests 

for tail independence in extreme value models. These tests are based on Cramer-
von Mises and Anderson-Darling statistics.

Cramer-von Mises Test. Conditioning on K (n) = m > 0, we can apply the 
Cramer-von Mises test to rvs Ui (i =1,…, m). Consider the corresponding order 
statistics U1:m ≤ …≤ Um:m, then the Cramer-von Mises statistic is

2

:
1

1 2 1: .
12 2

m

CM i m
i

iT U
m m=

− = + −  
∑

Csorgo and Faraway (1996) obtained the exact and asymptotic dfs of Cramer-
von Mises statistic, where we can use them to calculate p-value of this test. 
Therefore, approximate p-value of Cramer-von Mises test is equal to

pCM := 1 – K(TCM), 

where K is the df proposed by Csorgo and Faraway (1996).
Anderson-Darling Test. Conditioning on K (n) = m > 0, we can apply the 

Anderson-Darling test to rvs Ui (i =1,…, m). Consider the corresponding order 
statistics U1:m ≤ …≤ Um:m, then the Anderson-Darling statistic is

: 1:
1

1: (2 1)[log( ) log(1 )].
m

AD i m m i m
i

T m i U U
m − +

=

= − − − + −∑

Anderson and Darling (1954) found the limiting df of this statistic. The mean 
of this limiting df is 1 and the variance is 2(π2–9)/3~0.57974. Using the limiting 
df, we can obtain approximate p-value of Anderson-Darling test as below

pAD := 1–A(TAD),

where A is the limiting df proposed by Anderson and Darling (1954).

3. 	 Monte Carlo Experiments
In this section, we carried out to evaluate the performance of all above tests 

for the tail independence by using Monte Carlo experiments. The joint behavior of 
rv (X,Y) is assumed to be adequately represented by three one-parameter families 
of extreme value copulas with dependence parameter θ, namely Gumbel copula, 
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Galambos copula and Husler-Reiss copula. Also, we considered Frank copula 
does not belong to extreme value copulas. The Gumbel copula is defined as

1

( , ) ( ln ) ( ln ) , [1, ),C u v exp u vθ θ θ
θ θ

 
 = − − + − ∈ ∞  

 

Galambos copula is expressed as
1
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−− − 
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for θ∈[0, ∞) Husler-Reiss copula is
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and Frank copula is specified by
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For more details about these copulas see Joe (2014).

The Monte Carlo experiments are conducted for the threshold  c = –0.5, –0.1, 
–0.05, and based on K(n) = m = 25 exceedances under the hypothesis H0 of the 
independence of X and Y. 

The chi-square statistic uses k = 4 intervals of equal length. 10000 
replications are performed and we compute the percentage of rejection of H0. Two 
characteristics of the tests were of interest: their ability to maintain their nominal 
level, arbitrarily fixed at 5% throughout the study, and their power under a variety 
of alternatives. It should be noted that, conditioning on K (n) = m = 25, when the 
threshold c increases to zero, the required sample size increases too.

Tables 1-3 give the percentage of rejection of the hypothesis of the 
independent tails of X and Y in sampling from different extreme value copulas. 
In Gumbel, Galambos and Husler-Reiss copulas, the TDC are equal to 2 – 21/θ, 
2-1/θ and 2[1–Φ(1/θ] respectively. Therefore, in each table, the first row of each 
test shows the empirical size of the test under the null hypothesis of the tail 
independence of rv (X,Y) and other rows present the power of these tests under 
the tail dependence. 
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Table 1. Percentage of rejection of H0 by various tests with the underlying Gumbel 
copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

1 0.1550 0.0797 0.0672

2 0.9704 0.9641 0.9703

5 0.9852 0.9726 0.9698

10 0.9843 0.9740 0.9701

Fisher’s κ

1 0.0500 0.0531 0.0494

2 0.1991 0.2388 0.2450

5 0.2290 0.2405 0.2501

10 0.2299 0.2486 0.2494

Kolmogorov-
Smirnov

1 0.0467 0.0515 0.0521

2 0.6236 0.7267 0.7513

5 0.7140 0.7485 0.7586

10 0.7222 0.7542 0.7604

Chi-square

1 0.0365 0.0423 0.0407

2 0.4720 0.5841 0.6066

5 0.5682 0.6050 0.6161

10 0.5750 0.6077 0.6060

Cramer-von Mises

1 0.0477 0.0492 0.0536

2 0.6841 0.7839 0.8050

5 0.7702 0.8050 0.8112

10 0.7742 0.8042 0.8072

Anderson-Darling

1 0.0468 0.0490 0.0537

2 0.7960 0.8694 0.8879

5 0.8622 0.8858 0.8893

10 0.8647 0.8898 0.8913

As seen in tables regardless of the threshold value, except for the Neyman-
Pearson test, the size of all tests is close to nominal level 5%, this is shown Bold 
in Tables 1-3. Of course, by choosing the small threshold close to 0 we ensure that 
the size of the Neyman-Pearson test also controls. This is inspected in Lemma 3.1 
of Falk and Michel (2006). 
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Table 2. Percentage of rejection of H0 by various tests with the underlying Galambos 
copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ 

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

0 0.1688 0.0906 0.0917

2 0.9805 0.9674 0.9713

5 0.9856 0.9713 0.9708

10 0.9853 0.9729 0.9721

Fisher’s κ 

0 0.0485 0.0528 0.0523

2 0.2104 0.2351 0.2424

5 0.2304 0.2415 0.2460

10 0.2335 0.2386 0.2415

Kolmogorov-
Smirnov

0 0.0510 0.0500 0.0498

2 0.6742 0.7392 0.7571

5 0.7132 0.7453 0.7535

10 0.7165 0.7509 0.7557

Chi-square

0 0.0434 0.0400 0.0368

2 0.5266 0.5938 0.6083

5 0.5758 0.6064 0.6130

10 0.5671 0.6100 0.6119

Cramer-von Mises

0 0.0536 0.0502 0.0523

2 0.7282 0.7918 0.8058

5 0.7698 0.8013 0.8068

10 0.7698 0.8106 0.8063

Anderson-Darling

0 0.0550 0.0527 0.0545

2 0.8306 0.8771 0.8896

5 0.8616 0.8878 0.8886

10 0.8622 0.8873 0.8872

Comparison of the power of the tests shows that the Neyman-Pearson test 
having the largest power followed by the Anderson-Darling, Cramer-von Mises, 
Kolmogorov-Smirnov and chi-square tests, respectively. 
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Table 3. Percentage of rejection of H0 by various tests with the underlying Husler-
Reiss copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

0 0.1652 0.0737 0.0633

2 0.9774 0.9716 0.9705

5 0.9847 0.9700 0.9701

10 0.9870 0.9723 0.9684

Fisher’s κ  

0 0.0487 0.0507 0.0497

2 0.1974 0.2348 0.2509

5 0.2251 0.2485 0.2496

10 0.2288 0.2438 0.2421

Kolmogorov-
Smirnov

0 0.0484 0.0497 0.0522

2 0.6602 0.7382 0.7509

5 0.7118 0.7464 0.7556

10 0.7245 0.7398 0.7577

Chi-square

0 0.0373 0.0389 0.0391

2 0.5111 0.5895 0.6047

5 0.5603 0.6049 0.6119

10 0.5810 0.5994 0.6121

Cramer-von Mises

0 0.0526 0.0485 0.0532

2 0.7186 0.7886 0.8013

5 0.7641 0.8000 0.8067

10 0.7801 0.7984 0.8155

Anderson-Darling

0 0.0512 0.0496 0.0524

2 0.8234 0.8774 0.8846

5 0.8599 0.8832 0.8850

10 0.8684 0.8811 0.8885

As Falk and Michel (2006) pointed out the distribution of pκ is almost not 
affected, therefore the test for the independence of X and Y based on Fisher’s κ 
fails. These results are viewable in Tables 1-3.
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Table 4. Percentage of rejection of H0 by various tests with the underlying Frank 
copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ 

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

0 0.1589 0.0739 0.0621

2 0.3928 0.1094 0.0804

5 0.6683 0.1626 0.1053

10 0.8722 0.2726 0.1564

Fisher’s κ 

0 0.0502 0.0479 0.0471

2 0.0655 0.0547 0.0512

5 0.1021 0.0548 0.0552

10 0.1550 0.0703 0.0525

Kolmogorov-
Smirnov

0 0.0502 0.0494 0.0447

2 0.0997 0.0572 0.0491

5 0.2434 0.0737 0.0557

10 0.4726 0.1161 0.0729

Chi-square

0 0.0403 0.0424 0.0374

2 0.0664 0.0437 0.0372

5 0.1592 0.0519 0.0433

10 0.3329 0.0760 0.0518

Cramer-von Mises

0 0.0521 0.0491 0.0439

2 0.1086 0.0577 0.0507

5 0.2829 0.0763 0.0584

10 0.5252 0.1322 0.0786

Anderson-Darling

0 0.0505 0.0507 0.0458

2 0.1161 0.0604 0.0499

5 0.3050 0.0783 0.0577

10 0.5660 0.1389 0.0806

Table 4 illustrates the percentage of rejection of the hypothesis of the 
independent tails of X and Y in sampling from Frank copula. In Frank copula, for 
all values of the dependence parameter θ, TDC is equal to zero; i.e. X and Y are 
tail independent. Therefore, this table shows the empirical size of the test under 
the null hypothesis of the tail independence of rv (X,Y). As seen in Table 4, when 
the dependence parameter θ  is zero (i.e. data does not have any dependency), 
except for the Neyman-Pearson test, the size of all tests is close to nominal level 
5% and by choosing the small threshold the size of the Neyman-Pearson test also 
controls. By increasing the dependence parameter, although X and Y do not have 
tail dependence, the empirical size of the tests are violated. Looking at Table 
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4, we observe that in this case if the threshold value is close to 0, the empirical 
level approaches the nominal level, this is shown Bold in Table 4. The results of 
Table 4 show that, even if rv (X,Y) does not belong to extreme value model, tail 
independence tests for a small threshold still have good performance.

4. 	 Data Analysis
In this section, the application of tail independence tests is illustrated using 

two different datasets. The first one is due to Cornwell and Trumbull (1994), who 
prepared based on the transcript of crime in North Carolina regarding 24 variables. 
The dataset included a panel of 90 observational units (counties) from 1981 to 
1987, i.e. total number of observations is 630. We consider the two variables 
density (people per square mile) and crmrte (crimes committed per person) and 
other variables are ignored. We consider this dataset as Crime data. The second 
dataset, reported from "Investing.com." This site is a global financial portal 
and internet brand composed of 28 editions in 21 languages and mobile apps 
for Android and iOS that provide news, analysis, streaming quotes and charts, 
technical data and financial tools about the global financial markets. We consider 
stock price pairs from two Japanese multinational automaker: Honda Motor and 
Mazda Motor. Our sample period covers a total 758 observations from 10 Sep. 
2014 to 16 Oct. 2017. We call this dataset as Stock data. In Figure 1, we draw 
scatter plots of empirical df of pairs for two datasets. 
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Figure 1. Scatter Plots of Empirical df of Pairs

We use a specific copula method for estimating TDC. For this purpose, we 
fitted three famous Archimedean copulas to the two datasets and obtained Cramer-
von Mises statistic ( )B

nS  introduced by Genest et al. (2009), where is based on 
Rosenblatt’s transform. It should be noted that the margins are estimated by 
empirical dfs. The results are shown in Table 5. 
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Table 5. Copula goodness-of-fit test for two datasets

Copula 
under H

0

Crime Data Stock Data

p.value AIC θ̂ TDC p.value AIC θ̂ TDC

Clayton 0 -313.88 1.909 ----- 0 -556.56 2.620 -----

Frank 0.097 -368.61 5.528 ----- 0.093 -644.07 7.112 0

Gumbel 0.24 -375.09 1.954 0.574 0.032 -580.55 2.310 -----

According to the p-values of tests, we conclude that Gumbel copula and Frank 
copula have best fit to the two datasets respectively. Therefore Crime data are tail 
dependent, where TDC is equal to 0.574 and Stock data are tail independent. In the 
following, all proposed tests in Section 2 are performed on the two datasets and 
the results are displayed in Table 6. It should be noted that in carrying out these 
tests, for each dataset, the threshold c is chosen to have at least 30 observations 
greater than of the threshold value. Therefore, in two datasets, the thresholds are 
equal to –0.15 and –0.25 respectively. 

Table 6. Independence tests for two datasets

Test
p.value

Crime Data Stock Data

Neyman-Pearson 4.891685e-09 0.7543855

Fisher’s κ 4.364887e-02 0.2194695

Kolmogorov-Smirnov 1.245545e-03 0.4993588

Chi-square 1.514254e-02 0.6754989

Cramer-von Mises 1.027966e-03 0.7278006

Anderson-Darling 3.082995e-04 0.6549564

In Crime data, all tests reject the null hypothesis of the tail independence of 
variables density and crmrte at 0.05 level, i.e., two variables density and crmrte 
are tail dependent; therefore, if the density of people per square mile exceeds 
a certain threshold, then crimes committed per person will exceed that specific 
threshold.

In Stock data, tail independence is not rejected by any of the tests at 0.05 
level, i.e., stock prices of the two Japanese automakers Honda and Mazda are tail 
independent. Therefore tail independence tests confirmed the results of Table 5. It 
is noteworthy that if the TDC is estimated using the unsuitable copula function, 
the tail independence tests show this matter; this indicates the importance of using 
the test to verify the existence of tail dependence in the data.

M.B. Ghalibaf
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5. 	 Conclusion
In this paper, we recommended two new statistics Cramer-von Mises and 

Anderson-Darling for tail independence in extreme value models-based approach 
of Falk and Michel (2006). Simulations show that two tests are better than the 
proposed tests by Falk and Michel. Also, we illustrated the importance of using 
these tests by using two real datasets, while the tail dependence maybe is estimated 
incorrectly and this wrong is shown by tests.
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