
 9

Hierarchical Bayesian Model for Correcting Reporting Delays in Dengue Counts1 

 
Mikee T. Demecillo2 and Bernadette F. Tubo 

Department of Mathematics and Statistics 
MSU-Iligan Institute of Technology Iligan City, Philippines 

 
 

ABSTRACT 

Real-time surveillance and precise case estimation are necessary for situational 
awareness in order to spot trends and outbreaks and establish efficient control 
actions. The comprehension of the mechanisms of a sudden rise or fall in disease 
cases that change over time is hampered by the reporting delays between disease 
start and case reporting. This study uses a flexible temporal nowcasting model 
with a Bayesian inference for latent Gaussian models built in R-INLA to rectify 
reporting delays for weekly dengue surveillance data in Northern Mindanao from 
2009 to 2010. Additionally, it seeks to quantify all the uncertainties involved in 
replacing the missing value. The statistical issue is to forecast run-off triangle 
numbers based on actual counts 𝑛𝑛!,# . In contrast to the currently reported 
instances, which seem to be declining, the posterior predictive model on the 
given temporal dataset recognizes the fact that there are more dengue cases than 
there were previously (supporting the actual scenario). This implies that even 
with delayed data, the model was still able to provide a reliable estimate of the 
true number of instances. This paper offers a model for nowcasting to aid in 
dengue control and good judgment on the part of interested authorities. 
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I. INTRODUCTION 

 Epidemiological surveillance is the systematic collection, analysis, and dissemination of 
health data for public health purposes according to Klaucke, et al. (1988). Identifying outbreaks 
and launching prompt response is one of the duties of infectious disease surveillance. In many 
applications from this discipline, count data are generated that might not accurately reflect the 
quantity of interest. In accord with Farrington, et al. (1996), detecting an early increase in 
diseases is frequently difficult since reports must be examined and acted on as they accumulate, 
with little opportunity to correct errors or compensate for reporting delays and other reporting 
system abnormalities.  

Infectious disease control requires effective and prompt responses to unanticipated 
increases in disease burden. As reported, public health control strategies may be greatly 
impacted by an inability to generate a timely and accurate estimation of the burden of 
contagious diseases. A virus borne by mosquitoes called dengue has this type of issue with 

 
1 Presented at the 15th National Convention on Statistics, 03-5 October, 2022, Crowne Plaza Manila Galleria, 

Ortigas Center, Quezon City and published in this issue as a Technical Paper. 
2 Corresponding author: mikee.demecillo@g.msuiit.edu.ph 



10 | The Philippine Statistician Vol. 71, No. 2 (2022)

tropical nations as one of the diseases that is affected by delay problems. A significant 
challenge for dengue monitoring is the time lag between the start of adverse health events and 
reporting, as well as the time lag between reporting and the identification of trends or outbreaks. 
This causes a delayed or nonexistent response as well as an initial underestimation of the true 
scenario.  It lengthens the time required to respond to catastrophic outbreaks and puts lives at 
risk. 

A timely and accurate disease count, with no delays, is vital for monitoring health 
outcome trends and detecting disease outbreaks that vary over time. Delay reporting, on the 
other hand, is where the total observable count, which may still be fewer than the true count, 
is only available after a specific length of time. As a result, it is a major issue when decisions 
are made based on total counts required before everything has been thoroughly inspected. As 
a result, forecasts regarding the current condition of the disease must be made based on partial 
counts observed, in order to monitor and detect abrupt spikes that may necessitate prompt 
public health responses and vector control measures. 

Rosinska, et al., (2015) stated that the problem of occurred-but-not-yet-reported cases 
during outbreaks is well known from the HIV/AIDS outbreak, and different statistical 
approaches have been proposed to handle delayed reporting. A standard reference is Lawless 
(1994). However, a more flexible Bayesian nowcasting approach has been developed by Höhle, 
et al. (2014). By allowing for temporal fluctuation in both the overall number of cases 𝑁𝑁! and 
the delay mechanism, the framework was used to address delays. The reporting delay is defined 
as the interval between the onset and the official case reporting by a health authority, where 
the delay correction approach is referred to as the nowcast. Additionally, Bastos, et al. (2019) 
suggested utilizing a lognormal survival model in conjunction with a Bayesian hierarchical 
modeling technique to rectify reporting delay and associated uncertainty. They apply this 
paradigm to data on spatiotemporal severe acute respiratory infections (SARI) in the state of 
Paraná (Brazil) and dengue fever in Rio de Janeiro using integrated nested Laplace 
approximations (INLA). The marginal distribution of each count 𝑛𝑛!,#,$ is negative binomial 
with mean 𝜆𝜆!,#,$ and dispersion parameter, ∅ to allow spatiotemporal variation in counts, as 
well as covariates.  

Inspired by the work of Bastos, et al. (2019), provides a decision-support tool that 
examines the Bayesian hierarchical model for count data with time delays (temporal model), 
which is sufficiently adaptable to be used for a wide range of clinical applications. The 
suggested model, a latent Gaussian, is readily implemented using R-INLA, which roughly 
approximated the marginal posterior distributions of the latent fields and the hyperparameters. 
This study also considers the effects of delays that occur in reporting events such as cases of a 
reportable disease like dengue cases in Northern Mindanao from 2009 to 2010 and in 
estimating the number of events that have occurred but not yet reported (OBNR) events for 
temporal model.  
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II. RELATED LITERATURE 

Historically, as reported by Renshaw, et al., (1998), actuarial sciences have accounted 
for systematic reporting delays when modeling claims reserves. It has been addressed for 
HIV/AIDS-related health outcomes of Brookmeyer (1989), mortality reporting Lin, et al., 
(2008), and chronic diseases, including cancer registries, Midthune (2005). Generally, in 
accordance with Brookmeyer (1989), the process of rectifying delayed reporting has been 
isolated from the task of predicting or forecasting the overall incidence. However, this 
disregards the joint uncertainty in the total count incidence and the presence of delay. Suppose, 
for instance, that at time 𝑡𝑡 the number of cases reported in the first week is typically low, 𝑛𝑛!,%. 
This could be due to a low proportion of 𝑁𝑁! reported in the first week, an exceptionally low 
level of 𝑁𝑁!, or to both. Differentiating between both scenarios is essential for accurate 
forecasting, hence we focus on a technique that predicts both the delay mechanism and the total 
count. 

Additionally, methods have been created to combat infectious illness outbreaks. Methods 
have been developed to nowcast (i.e. estimate in real-time) the current number of affected 
individuals. Hohle and Heiden (2014) predicted the daily number of hemolytic uremic 
syndrome hospitalizations. They evaluate the distribution of the counts 𝑛𝑛!,# with respect to the 
totals 𝑁𝑁!. The framework is then hierarchical, with 𝑁𝑁! assumed to have a Poisson or Negative 
Binomial distribution. 𝑛𝑛!,& |𝑁𝑁! is then multinomial with a probability vector of size 𝐷𝐷 that must 
be calculated. Hohle, et al., (2011) suggested that the concept was incorporated into a Bayesian 
nowcasting model to account for reporting delays of Shiga toxin-producing Escherichia coli in 
Germany. By describing the multinomial probability vector as a function of time, the model 
permits smooth changes in the temporal variation of the total number of cases 𝑁𝑁! and the delay 
mechanism. Then, Noufaily et al. (2013, 2016) proposed a quasi-Poisson algorithm-based 
technique for predicting infectious disease outbreaks from laboratory data with reporting 
delays. 

In 1993, Mack developed the so-called chain-ladder technique as a distribution-free 
method to estimate missing delayed counts. The chain ladder method is likely the most 
commonly used technique for assessing IBNR claims reserves. Renshaw and Verral (1998) 
demonstrated that the model underlying the chain-ladder technique is a generalized linear 
model for 𝑛𝑛!,# 	where the mean is denoted by 𝐸𝐸*𝑛𝑛!,#+ = 𝜇𝜇 + 𝛼𝛼 + 𝛽𝛽#.  This enables the approach 
to process negative incremental claims, as demonstrated. 

Salmon, et al., (2015) demonstrated that the conditional multinomial method might be 
used to motivate the chain ladder structure. Assume initially that the total counts 𝑁𝑁! are 
governed by a negative binomial distribution with a certain mean λ! and dispersion parameter 
ϕ; 𝑁𝑁!|λ! , ϕ	 ∼ 𝑁𝑁𝑁𝑁(λ! , ϕ). This is a common assumption when modeling disease count data, 
where the negative binomial extends the Poisson to account for overdispersion in data where 
the amount of susceptible population is unknown, which is a typical issue in observational 
monitoring data. The marginal distribution of each 𝑛𝑛!,# is a negative binomial with mean π!,#λ! 
and dispersion parameter ϕ, provided the counts in each row are conditionally multinomial 
𝑛𝑛! ∼ MN(π', N'). In this way, the conditional multinomial technique can be used to justify the 
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chain ladder method, which explicitly models the marginals as negative binomial. However, 
ϕ!,#  and λ! cannot be separated. 

The correction of time delays, as proposed by Bastos et al., (2019) will be the focus of 
this study. Bayesian inference for the latent Gaussian model, which is easily implemented in 
the INLA package, will be used. The posterior marginal of the latent Gaussian fields and the 
posterior marginal of the hyperparameters under investigation are both considered in this work. 
By using the model in the R software, its usefulness may be evaluated. 

The field of infectious disease modelling includes a vast literature of methodologies, but 
the difficulty of estimating spatiotemporal reporting delays in real-time public health control 
applications has not been previously addressed. Bastos, et al., (2019) established an integrated 
dengue monitoring system in Rio de Janeiro, Brazil, which uses a lognormal survival model to 
adjust reporting delays. It assumes that the distribution of the counts 𝑛𝑛!,#,$ follows a 
conditionally independent negative binomial function with the mean λ!,#,$ and the scale 
parameter ϕ. They consider approximate Bayesian Inference in a popular subset of structured 
additive regression models, latent Gaussian models, where the latent fields are Gaussian, 
controlled by a few hyperparameters and with non-Gaussian response variables. The integrated 
nested Laplace approximation is used, which makes the model's implementation fast. They 
contrasted the spatial version model (spatiotemporal), which assumes spatial variability and 
dependence on borrowing information across the spatial units, with the nonspatial version 
model (temporal), which has dependency structures in both time and delay. By Codeco, et al., 
(2019), Brazilian authorities are using the model as a decision-making tool after further 
development and as warning systems, infoDengue and infoGripe.  

  
III. RESEARCH METHODOLOGY 

A. Data Description 
 

An infectious disease spread by mosquitoes called dengue places a heavy impact on the 
economy and public health in tropical areas. For instance, according to Undurraga, et al., 
(2017), dengue poses a significant burden in the Philippines, over ten times more than the 
estimated burdens of rabies, intestinal fluke diseases, and tuberculosis combined.  

 
The Gregorio T. Lluch Memorial Hospital in Pala-o, Iligan City, served as the source for 

collecting data on recorded dengue cases from the Gregorio T. Lluch Memorial Hospital in 
Pala-o, Iligan City. The statistics acquired to cover the time period beginning in January 2009 
and ending in December 2010 and pertain to dengue cases in Northern Mindanao. A substantial 
number of dengue cases were reported during the first six months of 2010. The purpose of this 
study is to represent behavior that can exhibit periods of very low activity as well as rapid 
increases and decreases. In order to demonstrate this, 77 weeks spanning from 2009 to 2010 
are used; 52 weeks in 2009 and the 1st to 25th weeks (June 2010). This shows an immediate 
spike in the number of dengue cases in Northern Mindanao.  
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B. Data Management and Processing 

Let the delay be denoted by 𝑑𝑑 = 0,1, … , 𝐷𝐷 as used in the model. To calculate the delay, 
records must include two dates: the date of notification (date of admission) and the date of 
digitization (when the information is fed into the system or date of entry). Below are the 
procedures on how to calculate delays: 

 
• First, subtract the date of notification from the date of digitization. 
• To have weekly data, divide the obtained days of delay by seven. 
 

After that, remove the observations after 77 weeks. Dengue fever should be reported within 
seven days of the diagnosis. In actuality, however, less than 50% of applicants are notified 
within one week, less than 75% within four weeks, and no more than 90% within seven weeks. 
As a result, eight weeks is a plausible upper bound for the delay period 𝐷𝐷. Table 1 depicts the 
data structure of the surveillance data with reporting delays of dengue cases in Northern 
Mindanao. 

Table 1: Time-delay data of dengue cases in Northern Mindanao. 

 
Table 2: Data Structure for Dengue Cases with Missing Values. 



14 | The Philippine Statistician Vol. 71, No. 2 (2022)

Then, train the data or construct the run-off triangle data frame shown in Table 2. The table 
displays the data format for dengue cases, with missing values (grey) representing delayed 
counts. Figure 1 depicts the methodology employed to fulfill the study's purpose. 

Fig. 1 Schematic diagram of the proposed hierarchical Bayesian temporal model to correct delays. 

 
C. Latent Gaussian Method 

 
Let 𝑛𝑛!,# represent the number of instances reported in week	𝑡𝑡 that were delayed by 𝑑𝑑 

weeks, where 𝑡𝑡	 = 	1,2, . . . , 𝑇𝑇 and 𝑑𝑑	 = 	0,1, . . . , 𝐷𝐷. 𝑇𝑇 is the most recent time step for which data 
is available, and 𝐷𝐷 is the greatest permissible delay, which for disease applications is 
potentially infinite but is assumed to be finite for the sake of simplicity. Note that if 𝑡𝑡 + 𝑑𝑑	 >
	𝑇𝑇, 𝑛𝑛!,# is occur-but-not-yet-reported and so unknown. 
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The INLA framework was created to handle latent Gaussian models, in which the counts 
𝑛𝑛!,#  follow a conditionally independent negative binomial probability distribution, with mean 
𝜆𝜆! and scaling parameter 𝜙𝜙 , i.e.  

 

                         𝒏𝒏𝒕𝒕,𝒅𝒅 ∼ NegBinE𝜆𝜆𝒕𝒕,𝒅𝒅, 𝜙𝜙F, 𝜆𝜆!,# > 0, 	 𝜙𝜙 > 0.	                               (1) 
 
The parameterization used here is such that 𝐸𝐸*𝑛𝑛!,#+ = 𝜆𝜆!,# and 𝑉𝑉*𝑛𝑛!,#+ = 𝜆𝜆!,#E1 + 𝜆𝜆!,#/𝜙𝜙F. 
Using a Bayesian technique, the predictive distribution of 𝑛𝑛!,# for any 𝑡𝑡 and 𝑑𝑑 (given the data) 
is readily available, as well as the uncertainty associated in their estimation. 

 
The parameter 𝜆𝜆!,# is linked to a structured additive predictor via the logarithm of their 

mean, 𝜆𝜆!,#, 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆!,#). This is done in order to capture the structured temporal variation in 𝑛𝑛!,#, 
which is defined as follows: 

                                   𝑙𝑙𝑙𝑙𝑙𝑙E𝜆𝜆!,#F = 𝜇𝜇 + 𝛼𝛼! + 𝛽𝛽# + 𝛾𝛾!,# + 𝜂𝜂*(!) + 𝑋𝑋!,#-                        (2) 
 
• 𝜇𝜇 is the log-scale total mean count. An improper prior proportional to one was 

applied to a fixed effect 𝜇𝜇.  
• The mean temporal evolution of the count-generating process is captured by the 

random effects 𝛼𝛼!.  
• The mean structure of the delay mechanism is captured by 𝛽𝛽#. These can be 

modeled using random walks, particularly first-order ones, i.e, 

𝛼𝛼! ∼ 𝑁𝑁(𝛼𝛼!.%, 𝜎𝜎/0), 	 	 𝑡𝑡 = 2,3, … , 𝑇𝑇  and                      (3) 

𝛽𝛽# ∼ 𝑁𝑁E𝛽𝛽#.%, 𝜎𝜎10F, 	 	 𝑑𝑑 = 1,2, … , 𝐷𝐷                             (4) 

where half normal HN(𝜏𝜏0) prior distributions are assumed for 𝜎𝜎/ and 𝛽𝛽#. These are 
distribution on [0, ∞) where parameter 𝜏𝜏 controls the variance. Thinking about 𝛼𝛼! and  
𝛽𝛽# as unknown functions in time and delay, 𝜏𝜏 controls the "wiggliness" of these 
functions-the smaller it is, the less wiggly (or in some sence "smooth") the functions 
will be (i.e, the smaller the first-order differences will be). 

• The time-delay interaction term 𝛾𝛾!,# is modelled as 
                                                 𝛾𝛾!,# ∼ 𝑁𝑁E𝛾𝛾!.%,# , 𝜎𝜎20F                                                     (5)      

so that there is an independent realization of a random walk order 1, for each delay 
column. This term is important, as it allows for changes in the delay mechanism over 
time.  

•  𝜂𝜂*(!), where  𝑤𝑤(𝑡𝑡) 	= 	1, . . . , 52 is the week index, is a seasonal component defined 
as a second-order random effect, 
                                          𝜂𝜂* ∼ 𝑁𝑁E2𝜂𝜂*.% − 𝜂𝜂*.0, 𝜎𝜎30F                                           (6) 
constrained in such a way that week 1 and week 52 are joined. 

• 𝑋𝑋!,#-  is a matrix of temporal and delay-related covariates with associated vector of 
parameters 𝛿𝛿. 
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Note that all of the components  𝛼𝛼!, 𝛽𝛽#, 𝜂𝜂*(!),	and 𝛾𝛾!,# are constrained to sum to zero, to allow 
identifiability of the intercept 𝜇𝜇. 

The hierarchical model is then completed with an approximate prior distribution for the 
hyperparameters of the model 𝜃𝜃 = E𝜙𝜙, 𝜎𝜎/𝟐𝟐, 𝜎𝜎1𝟐𝟐, 𝜎𝜎2𝟐𝟐, 𝜎𝜎3𝟐𝟐F, where 𝜙𝜙 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1,0.1), 𝜎𝜎/0 ∼ 
𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1),𝜎𝜎10 ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 1), 𝜎𝜎30 ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 1), 𝜎𝜎20 ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1). Assuming an 
exponential  𝐸𝐸𝐸𝐸𝐸𝐸(0.1)  prior distribution for 𝜙𝜙 with mean 10 and standard deviation 10. This 
is a weakly informative prior that places more probability over smaller values of 𝜙𝜙	 and thus 
assumes the preference of the negative binomial to the Poisson. A gamma prior is then set to 𝜙𝜙.  

 The Bayesian inference for the latent Gaussian model is used to obtain a posterior 
marginal distribution. The joint posterior distribution for Θ = E𝜇𝜇, 𝛼𝛼! , 𝛽𝛽# , 𝛾𝛾!,# , 𝜂𝜂* , 𝜎𝜎/0, 𝜎𝜎10, 
𝜎𝜎30, 𝜎𝜎20, 𝜙𝜙F, given all the observed data  𝒏𝒏 = 𝑛𝑛!,# is given by:    

	𝐸𝐸(Θ|𝑛𝑛) ∝ 𝐸𝐸(Θ)``𝐸𝐸E𝑛𝑛!,#aΘF	
5

#67

	(7)
8

!6%

 

where  𝐸𝐸E𝑛𝑛!,#aΘF is negative binomial density function (1), and  𝐸𝐸(Θ) is the joint prior 
distribution given by the product of the prior distributions for 𝜙𝜙, 𝜎𝜎/0, 𝜎𝜎10, 𝜎𝜎20, 𝜎𝜎30  and the random 
effects distribution. To investigate the posterior marginal distribution of hyperparameters and 
latent Gaussian models, set the latent Gaussian vector 𝐸𝐸,  𝒙𝒙 = {𝜇𝜇, 𝛼𝛼𝒕𝒕, 𝛽𝛽𝒅𝒅, 𝛾𝛾𝒕𝒕,𝒅𝒅, 𝜂𝜂𝒘𝒘}  and 
hyperparameter vector 𝜃𝜃, 𝜃𝜃 = E𝜙𝜙, 𝜎𝜎/𝟐𝟐, 𝜎𝜎1𝟐𝟐, 𝜎𝜎2𝟐𝟐, 𝜎𝜎3𝟐𝟐F. Now, compute from 

	𝐸𝐸(𝐸𝐸, 𝜃𝜃|𝑛𝑛) ∝ 𝐸𝐸(𝐸𝐸, 𝜃𝜃)``𝐸𝐸E𝑛𝑛!,#a𝐸𝐸, 𝜃𝜃F
5

#67

8

!6%

,	 	(8) 

the posterior marginal 𝐸𝐸E𝐸𝐸:a𝑛𝑛!,#F, for some 𝑖𝑖; and 𝐸𝐸E𝜃𝜃:a𝑛𝑛!,#F, for some 𝑖𝑖. 

In any given step 𝑇𝑇, there are a number of occurred-but-not-yet-reported (missing) values 
𝑛𝑛!,# , 𝑡𝑡	 = 	𝑇𝑇 − 𝐷𝐷 + 1,… , 𝑇𝑇; 𝑑𝑑 = 	1, … , 𝐷𝐷 (see the grey cells in Table 2), as well as the marginal 
totals  𝐻𝐻8.5;%, … , 𝐻𝐻8. Of primary interest is of course  𝐻𝐻8, which needs to be nowcasts; 
however, hindcasts of  𝐻𝐻8.5;%, … , 𝐻𝐻8 − 1 may also be of interest, especially if one wants to 
quantify the rate of increase or decrease in the counts.   

From a Bayesian standpoint, this is a prediction problem in which the posterior predictive 
distribution can be used to estimate all of the missing 𝑛𝑛!,# 

	𝐸𝐸E𝑛𝑛!,#a𝑛𝑛F = h𝐸𝐸E𝑛𝑛!,#aΘF𝐸𝐸(Θ|𝑛𝑛)𝑑𝑑
<

	 	(9) 

where 𝒏𝒏 denotes all the data used to fit the model. 
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IV. RESULTS AND DISCUSSION 

A. Time Series of Reported Dengue Cases 

The available data consist of weekly counts of the number of dengue cases in Northern 
Mindanao for the time period January 2009 to June 2010, along with the associated delay 
information. Figure 2 shows the eventually reported number of dengue cases per week as a 
solid dark blue line. The dashed red line represents the current reported number of cases from 
the 18th to the 25th week of 2010. (circled cross). The green dotted line depicts the model 
estimates for this period, along with the blue 95 prediction intervals. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Time series of reported dengue cases in Northern Mindanao from 2009 to 2010. 

 
The estimated model is Equation 1 with 𝐷𝐷 = 8  and 𝑋𝑋!,# 	= 	0 because no covariates 
information on variables was available. As illustrated in Figure 2 (green dashed line) and 
accompanied by 95% prediction intervals, the model was used to correct the total number of 
instances 𝑁𝑁! not just for that week but also for the seven weeks prior. The graph demonstrates 
that the forecasts detect the fact that the number of dengue cases increased. In addition, it can 
be seen that the model forecast (green dotted line) and reported cases (dark blue line) increase 
in a similar fashion up to the 25th week of 2010.  

Considering the present number of instances, a decision-maker in public health could 
take the wrong decisions in June 2010 because it looks to be declining. Nonetheless, it can be 
noticed that the eventually reported instances are corrected for delays and, on occasion, 
misclassification utilizing laboratory confirmation tests or other factors that may cause delayed 
reports. 

B. Model Evaluation 

A set of checks are conducted to ensure that the model accurately represents the data. 
These include the deviation of the prediction from the actual value, the examination of 
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predictive samples of the total, the sample means and sample variance of the total 𝑁𝑁!, and the 
temporal dependency of the data.  

 

 
Fig. 3: Predicted totals plotted against the respective observed (sorted) values.  

 
Figure 3 depicts the predicted 𝑁𝑁!, defined as the means of these distributions, versus the 

observed 𝑁𝑁!, sorted ascendingly. The black line represents the 𝑥𝑥 = 𝑦𝑦 equation, and it shows 
how far the prediction deviated from the actual value. The blue line shows where the points 
would fall if all predicted values perfectly matched the observed ones, and	95% prediction 
intervals were also included. Figure 2 shows that the model estimates for dengue cases in 
Northern Mindanao very well capture the rank of the observed values, despite the fact that eight 
weeks of the 77 values are based on data that the model has not seen. 

Second, to evaluate the accuracy of the prediction samples of the totals. Figure 4 depicts 
the predictive distributions for the sample mean and standard deviation of the totals 𝑁𝑁!. 

 

Fig. 4: Sample mean and sample variance 
 

The observed values are represented by the vertical lines, while the tail portions of the observed 
values are represented by the probabilities that are quoted (values less than 0.025 or over 0.975 
suggest that the model does not represent the observed value well). Figure 4 shows that the 
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sample mean, and variance are accurately represented, given that the sample mean is 0.6932 
and the sample variance is 0.1618. This implies that the sample mean, and variance are accurate 
(like, are not extreme concerning the distribution). 
 

When it comes to being able to detect breakouts, temporal dependence is necessary. The 
degree of dependence that exists between different points in the time series is one of the factors 
that must be taken into consideration. Figure 5 illustrates the sample autocorrelation in the 𝑁𝑁! 
for each of the eight lags, which may be used to determine whether or not the temporal 
dependency in 𝑁𝑁! is accurately represented.  

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Predictive distribution for the sample autocorrelation of the totals. 

 
Figure 5 demonstrates that the model well reflects the time dependence in 𝑁𝑁!, since none of the 
observed values (vertical lines) are extreme in relation to their respective prediction 
distributions. It is widely accepted that our model's estimate of dengue cases is significantly 
dependent on the recent trend of the number of cases. This suggests that it can be utilized for 
behavior prediction, as it offers an indication as to how the number of dengue cases would 
behave in the near future. 

 

C. Estimate and Rolling Prediction 

Figure 6 depicts the estimations of three variables, namely α' the overall temporal 
evolution of the counts, β= the delay structure, and η>(') the seasonal variability. 

𝑙𝑙𝑙𝑙𝑙𝑙Eλ!,#F = µ + α! + β# + γ!,# + η*(!)                               (10)         

Figure 6(a) indicates that the overall temporal effect grows initially by a little amount, then 
continues to rise gradually, possibly representing an increase in the vulnerable population. In 
Figure 6 (b), the delay structure initially increases, then diminishes; as would be predicted, as 
time passes, more cases are recorded. However, in Figure 2, the eventually reported dengue 
cases exhibit no seasonality; it is therefore not surprising that Figure 6 (c) captures no seasonal 
component. 



20 | The Philippine Statistician Vol. 71, No. 2 (2022)

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6: Estimates of the overall temporal variation, overall delay structure and seasonal variability. 
 
 

The weekly rolling forecasts from the 25th week of 2010 (June 14–20) to the 36th week of 
2010 (August 16–22) are shown in the following figures. The black line represents the number 
of instances finally reported, the red dashed line represents the number of cases now reported, 
and the green dashed line represents the model prediction along with 95% prediction intervals. 
The symbol of a circling cross represents the weeks T=77, 78…,88. This period was chosen 
expressly to evaluate the model's capacity to capture an outbreak and the subsequent significant 
fall in the number of reported cases (black line). 

                    Fig. 7 𝑁𝑁$$ (77th week prediction)        Fig. 8 𝑁𝑁$% (78th week prediction) 
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Figures 7, 8, and 9 depict the time series for predicting dengue cases in Northern Mindanao 
from the 77th to the 78th week. The currently reported cases from the 25th to the 27th week of 
2010 appear to be decreasing (red dashed line). Nonetheless, immediate calculations indicate 
that the number of dengue cases is rising (solid black line). Based on the cases reported, the 
outcome could lead to the wrong actions or decisions, making people think that no preventive 
measures are needed since the number of dengue cases is decreasing. On the other hand, the 
model (green dashed line) accurately captures the upward trend of eventually reported dengue 
cases. Thus, it is sufficient to demonstrate that the one-to-three-week-ahead forecast accurately 
predicts the number of dengue cases. 

            Fig. 9 𝑁𝑁$& (79th week prediction)                    Fig. 10 𝑁𝑁%' (80th week prediction) 

Figures 10, 11 and 12 shows the time series for predicting dengue cases in Northern 
Mindanao from the 80th to the 82nd week. The outcome suggests that the number of cases 
reported during the 28th to 30th week of 2010 appears to be decreasing (red dashed line). 
Despite this, the calculation reveals that the number of dengue cases is significantly higher 
(solid black line) than the currently reported cases when there is no delay. 

       Fig. 11 𝑁𝑁%( (81th week prediction).                               Fig. 12 𝑁𝑁%) (82th week prediction) 

In addition, the model (green dotted line) in Figures 10 and 12 predicts the increasing 
trend but misses a slight decrease in the eventually reported cases; the estimate predicted a 
greater number of dengue cases than the actual counts, particularly in Figure 11. However, the 
model prediction from 𝑁𝑁?@ to 𝑁𝑁?? does not capture the eventually reported number of cases as 
it decreases its counts.  
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In summary, Figures 7, 8, and 9 demonstrate that in 𝑁𝑁AA, 𝑁𝑁A?, and 𝑁𝑁AB	weeks, the model 
(green dotted line) captures the increase in the eventually reported number of cases. Figures 
10, 11 and 12 demonstrate that the model projected a higher number of dengue cases in the 
years 𝑁𝑁?7	 to 𝑁𝑁?0	 than the actual eventually reported number of dengue cases.  

          Fig. 13 𝑁𝑁%* (83rd week prediction).                              Fig. 14 𝑁𝑁%+ (84th week prediction) 

Figures 13, 14, 15, 16, 17 and 18 demonstrate that in 𝑁𝑁?C	to 𝑁𝑁??, the model prediction of 
the number of dengue cases appears to increase, as the decreasing trend is not captured. Since 
then, most of the reported counts have fallen within the 95% prediction intervals, especially for 
time 𝑇𝑇 (shown by the circled cross), which is the most important value.  

 Fig. 15 𝑁𝑁%, (85th week prediction)         Fig. 16 𝑁𝑁%- (86th week prediction) 

Fig. 17 𝑁𝑁%$ (87th week prediction)              Fig. 18 𝑁𝑁%% (88th week prediction) 
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V. CONCLUSION 
 
The Bayesian Hierarchical Approach is a versatile paradigm for time-delayed structured 

illness count data applications. This enables the estimation of the missing (observable) data as 
𝑛𝑛!,# ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛Eλ!,# , ϕF so that nowcasting can be performed. Dengue data from Northern 
Mindanao are utilized to examine and illustrate the performance of the model, demonstrating 
the required flexibility and complexity of the framework. Temporal dependence is essential for 
detecting epidemics; despite the absence of covariates in the model, the R-INLA 
implementation makes this a simple operation. Because we employ the Laplace approximation 
(INLA) to obtain samples from the (marginal) posteriors, implementing the models in the 
Bayesian framework is exceedingly rapid.  

Surveillance and warning systems that rely on reported incidence to gauge danger may 
be uninformed if the delay is not addressed; hence, accurate estimates are crucial. 
Consequently, this strategy can be a useful tool for making decisions in surveillance systems. 
Forecasting based on the predictive distribution of counts suggests that the presented models' 
predictions can be readily incorporated into a decision-theoretic framework for issuing alerts. 
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