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ABSTRACT 

 
A Bayesian hierarchical modelling approach is utilized to nowcast COVID-19 cases in Mindanao, 
Philippines for the year 2020 to 2021. A spatio-temporal model is considered and the proposed 
methodology explores the possibility of a flexible way of correcting the time and space delayed 
reports of the COVID-19 cases for a duration of 4 weeks for the 27 provinces in Mindanao via a 
Bayesian approach.  The goal of the modelling approach is to include parameters that will correct 
reporting delays in the dataset and derive a model using the Integrated Nested Laplace 
Approximation (INLA). The study shows that the proposed model was able to capture the 
increasing trend of the COVID-19 disease counts, that is, the prediction counts derived are closer 
to the true count compared to the currently reported counts of COVID-19 cases which showed a 
decreasing behavior.  The ability of the proposed model to nowcast statistically significant 
estimates, particularly, for epidemic counts of COVD-19 in the presence of report delays may aid 
health authorities to have effective control measures and issuance of warnings to the public. 
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I. INTRODUCTION 
 
 Epidemiological surveillance is the ongoing and systematic collection, analysis, and 
interpretation of health data in the process of describing and monitoring a health event (Klaucke et al. 
1988).  Timeliness, which relates to the speed or delay between actions in a monitoring system, is one 
attribute of effective surveillance.  Reporting delays are well-known issues that breach timeliness.  
Because of defects or "lags" in the data collection method, the available count data, for a time, 
represents the truth less accurately (Swaan et al. 2018).  The associated bias from delayed reports affects 
parameter estimates, predictions, and statistical inferences. This added uncertainty could reduce the 
confidence of the policymakers and warning systems in the public health decision-making process 
(Stoner and Economou 2020).  
 

In the Philippines, the currently experienced COVID-19 disease highlighted the problem of 
disease surveillance. COVID-19, given its complexity and behavior, exposed the problem of delayed 
reporting on disease occurrences.  Reporting delay is affected by conflicting factors due to the disease 
incidence such as (1) a prolonged interval between the time an individual recognizes symptoms and is 
able to seek care and receive confirmatory testing, (2) administrative backlogs and delays in the 
acquisition, processing, and ultimate reporting of information, and (3) the length of time necessary to 
conduct a full case investigation (Kline et al. 2021). However, significant choices should be made 
continuously notwithstanding the way that the latest data is likely incomplete.  Hence, on that account, 
the methodology is needed to help provide a clearer picture to decision-makers in the face of the 
uncertainty from delays in reporting. 

 
Studies related to reporting delays have been introduced in the past by the authors Brookmeyer 

and Gail 1988 and Kalbfleisch and Lawless 1989 who both dealt with back-calculation and initiating 
events (events in the past) for AIDS incidence.  Lawless in 1994 also dealt with the estimation allowing 
random temporal fluctuations in reporting delay.  In recent studies, van de Kassteele et al. 2019, Stoner 
and Economou 2020, McGough et al. 2020, and Kline et al. 2022 enhance the model on its flexibility 
and interpretability, and extended prior works within a Bayesian framework.  Also, Rotejanaprasert et 
al. 2020 incorporate spatial dependence into temporal models using a Bayesian framework with sliding 
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windows.  As such, in the case of spatio-temporal models, the joint distribution would describe the 
behavior of the process at all spatial locations and at all times.  In the study of Bastos et al. 2019, a 
Bayesian hierarchical modelling approach was used to correct reporting delays and quantify the 
associated uncertainty in the missing values.  The author’s approach is illustrated by dengue fever 
incidence data in Rio de Janeiro and severe acute respiratory infection data in the state of Paraná, Brazil 

 
Motivated by the works of Bastos et al. 2019, this paper considers the Bayesian hierarchical 

approach for correcting report delays, suitable for a wide range of spatio-temporal count data and 
applies it to counts of COVID-19 cases in the provinces of Mindanao 

 
 
II.  REVIEW OF RELATED LITERATURES 
 
 The problem of occurred-but-not-yet-reported cases is well known from the HIV/AIDS 
outbreak.  Different statistical approaches have been proposed in the past to handle delayed reporting.  
A standard reference is based on the work of Lawless (1994).  Moreover, some early contributions in 
application to the estimation of HIV/AIDS incidences were Lagakos, et al. (1998) who developed 
nonparametric methods, Kalbfleisch and Lawless (1989), and Harris (1990), who both considered 
Poisson processes, and Kalbfleisch and Lawless (1991), who defined the regression models that enabled 
easy tests and covariate effect estimation using right truncated data.  The estimation procedure “back-
calculation” by Brookmeyer and Gail (1988) and Bacchetti, et al. (1993) applied to AIDS incidence 
data in the United States, refers to the reconstruction of the past history of first events (onset date) that 
must have occurred to give rise to the observed pattern of second event cases (date report confirmed), 
under the assumption of a known delay distribution.  Furthermore, statistical approaches are proposed 
not only to epidemiological data but also in actuarial science like Renshaw and Verall (1998). In recent 
literature, like Höhle and van der Hieden (2014), van de Kassteele, et al. (2019), and Bastos, et al. 
(2019), instead of back-calculation, 'nowcasting' is often used for estimating the current number of 
events using only the available partial information reported. 
 
 These various approaches may be broadly classified in two groups: one which models the delay 
counts !𝑛𝑛!,## jointly but also conditionally on the total (𝑁𝑁!), in conjunction with a separate model for 
the total, whose works includes the work of Salmon, et al. (2015), Höhle and van der Heiden (2014), 
and Stoner and Economou (2019). Other studies like in the works of Bastos, et al. (2019) and McGough, 
et al. (2020) where the delayed counts are modelled marginally without explicitly modelling using 
historical information on the totals. 
 
  Bastos, et al. (2019) and Rotejanaprasert, et al. (2020) applied this second approach to spatio-
temporal SARI data from Brazil and to dengue fever data from Thailand, respectively.  It was a 
generalization of older chain-ladder approaches where they extended the model with negative binomial 
marginals to allow for spatio-temporal variation in the counts, as well as covariate effects.  The 
approach is quite flexible, as it can potentially incorporate a wide variety of temporal, spatial and spatio-
temporal structures. 
 

Finally, as for the approximation process, Bastos, et al. 2019 performed a comparison between the 
nonspatial version of the model when implemented using both Markov Chain Monte Carlo (MCMC) and 
Integrated Nested Laplace Approximation in R (R-INLA).  Approximations involved in using the Integrated 
Nested Laplace Approximation (INLA) approach gained a significant increase in computational speed.  
Accordingly, it is a reasonable compromise to the gain in computational speed with the R-INLA model taking a 
matter of seconds compared to hours of MCMC. 
 

 
III. SPATIO-TEMPORAL MODEL 

 
In a spatio-temporal model, each of the different spatial regions or locations can independently 

execute the model. In fact, it would be more logical to include all of the data into one analysis by 
expanding the model to account for regional variation in both the counts' emergence and the delay 
mechanism.  This enables both inference on how the delay mechanism differs across the various areas 
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and the pooling of information to improve estimation in spatial locations with less data.  Therefore, 
spatial (Gaussian) random effects are included in the proposed model. Taking into account spatial 
variance, where s = S designates a place or region in some spatial domain 𝑠𝑠, the model is given by 

 
 𝑛𝑛!,#,$ = NegBin!λ!,#,$, ϕ#,   λ!,#,$ > 0,   ϕ > 0 (1) 

 
where 𝑛𝑛!,#,$ is the number of occurrences in spatial location s and time point t, reported with delay d 
time points.  The mean is then modelled as 
 

 𝑙𝑙𝑙𝑙𝑙𝑙!𝜆𝜆!,#,$# = 𝜇𝜇 + 𝛼𝛼! + 𝛽𝛽# + 𝛾𝛾!,# + 𝜂𝜂!,# + 𝜓𝜓$ + 𝛽𝛽#,$ + 𝑿𝑿𝒕𝒕,𝒅𝒅,𝒔𝒔( 𝜹𝜹 (2) 
 
with 𝑿𝑿𝒕𝒕,𝒅𝒅,𝒔𝒔(  being a model matrix that may also include spatially varying covariates.  The quantities 𝛼𝛼! 
and 𝛽𝛽# are interpreted as the overall temporal and delay evolution across space, respectively.  The 
component 𝛽𝛽#,$ captures the way in which the delay structure varies across space, whereas 𝜓𝜓$ describes 
the overall spatial variability and dependence in the counts. This particular formulation is motivated by 
the application to COVID-19 data, where the spatial region is fairly small so the temporal effects 𝛼𝛼! 
are not assumed to vary with space.  Given the implementation of the model in R-INLA, various 
possible choices exist for the specific formulation of 𝛽𝛽#,$ and 𝜓𝜓$. The space-time or space-delay 
interactions can range in complexity, from spatially and temporally unstructured Gaussian processes to 
non-separable formulations (Knorr-Held (2000) and Blangiardo, et al. (2013)).  The spatial effect 𝜓𝜓$ 
can be defined by an intrinsic autoregressive (IAR) process (Besag, et al., 1991) if the data are counts 
in areal units to allow similar temporal variation in neighboring areas.  Equally, 𝜓𝜓$ can be defined by 
a stationary Gaussian process if the data are counts in point locations, for example, so that spatial 
dependence decreases exponentially with distance.  
 

In the application of the model, where space is divided into a number of administrative areas, 
the model uses the type I space-time interaction as proposed by Knorr-Held (2000).  This is a 
formulation where 

 
 β#,$ ∼ 𝑁𝑁!β#)*,$, ω+

,# (3) 
 
is an independent first-order random walk for each area s, and where ψ$ = ψ$-./ + ψ$01#, that is, the 
sum of a spatially structured IAR process: 

 
𝜓𝜓$-./|𝜓𝜓$!2$

-./ 	∼  𝑁𝑁	 H
∑ 𝜔𝜔$,$!𝜓𝜓$!

-./
$!2$

∑ 𝜔𝜔$,$!$!2$
,

𝜎𝜎-./,

∑ 𝜔𝜔$,$!$!2$
L 

 

(4) 

and spatially unstructured random effects  ψ!"#$ ∼ 𝑁𝑁(0, σ"#$% ).  Here, σ&'(%  controls the strength of spatial 
dependence and σ"#$%  is the variance of the spatially unstructured effects. 
 
 
Construct of a Parameterized Prior Distribution 
 

Let 𝑛𝑛!,#,$ be the notified number of cases in week t delayed in d weeks occur in region s, where 
𝑡𝑡 = 1,2, … , 𝑇𝑇, 𝑑𝑑 = 0,1,2, … , 𝐷𝐷, and 𝑠𝑠 = 1,2, … ,27 for the provinces of Mindanao.  Note that if t + d > 
T, then 𝑛𝑛!,#,$ is unknown. 

 
Assume a negative binomial likelihood as follows: 
 

𝑛𝑛!,#,$ ∼ 𝑁𝑁egBin!λ!,#,$, ϕ#, 
 

for any 𝑡𝑡 = 1,2, … , 𝑇𝑇, 𝑑𝑑 = 0,1,2, … , 𝐷𝐷, and 𝑠𝑠 = 1,2, … ,27.  A gamma prior is set to ϕ, and the rate 
λ!,#,3 is given by  

 
ln!λ!,## = µ + α! + β# + γ!,# + β#,$( + Ψ$

(-./) + Ψ$
(01#). 

 



28 | The Philippine Statistician Vol. 71, No. 2 (2022)

A fixed effect µ was set as an improper prior proportional to one.  The random effects, {α!}, {β#}, {γ!,#} 
were set with different random walk priors, {β#,$( } is an independent Gaussian space-delay random 
effect, and the sum Ψ$

(-./) + Ψ$
(01#) is model as a Besag-York-Mollier (bym) model random effect, all 

implemented in the INLA package. The hyperparameters, all random effects standard deviations were 
assumed to be half normal, or truncated normal at (0,∞), with a distinct standard deviation τ for each 
random effect, denoted as 𝐻𝐻𝐻𝐻(τ).  Table 1 summarizes all priors and hyperpriors for the COVID-19 
model. 
 

Table 1. Prior distributions of the parameters. 
Parameter Distribution In INLA 

𝜙𝜙 𝜙𝜙 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1,0.1) 𝑒𝑒) ∼ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(1.0,0.1) 
𝜇𝜇 𝑝𝑝(𝜇𝜇) ∝ 1 default 

𝛼𝛼* ∣ 𝛼𝛼*+,, 𝜎𝜎-% 𝛼𝛼* − 𝛼𝛼*+, ∣ 𝜎𝜎-% ∼ 𝑁𝑁(0, 𝜎𝜎-%) 1st order random walk (rw1) 

𝜎𝜎-% 𝜎𝜎-% ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1) Half normal sd(0.1) 
𝛽𝛽$ ∣ 𝛽𝛽$+,, 𝜎𝜎.% 𝛽𝛽$ − 𝛽𝛽$+, ∣ 𝜎𝜎.% ∼ 𝑁𝑁>0, 𝜎𝜎.%? 1st order random walk (rw1) 

𝜎𝜎.% 𝜎𝜎.% ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1) Half normal sd(0.1) 
𝛾𝛾$,* ∣ 𝛾𝛾$,*+,, 𝜎𝜎0% 𝛾𝛾$,* − 𝛾𝛾$,*+, ∣ 𝜎𝜎0% ∼ 𝑁𝑁>0, 𝜎𝜎0%? 1st order random walk (rw1) 

𝜎𝜎0% 𝜎𝜎0% ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1) Half normal sd(0.1) 
𝛽𝛽$,!1 ∣ 𝜎𝜎.!

%  𝛽𝛽$,!1 ∣ 𝜎𝜎.!
% ∼ 𝑁𝑁 A0, 𝜎𝜎.!

% B Independent gaussian (iid) 
𝜎𝜎.!
%  𝜎𝜎.!

% ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1) Half normal sd(0.1) 

𝛹𝛹! ∣ 𝜎𝜎&'(% , 𝜎𝜎"#$%  𝛹𝛹! = (𝛹𝛹!&'( + 𝛹𝛹!"#$, 𝛹𝛹!"#$) bym model 

𝜎𝜎&'(%  𝜎𝜎&'(% ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1) Half normal sd(0.1) 

𝜎𝜎"#$%  𝜎𝜎"#$% ∼ 𝐻𝐻𝐻𝐻(𝜏𝜏 = 0.1) Half normal sd(0.1) 
 
By construction in INLA, the bym model is a representation of an IAR model added by an unstructured 
independent random effect. 
 
 
Parameter Estimates 
 

In this paper, a Bayesian framework is used in to consider the unknown parameters as random 
variables. Each parameter is given a probability distribution and is approximated by statistical models, 
as shown in Table 2. 
 

Table 2. Random Effects Model descriptions. 
Name Model 

Time RW1 model 
Delay RW1 model 
Time-Delay RW1 model 
Space bym model 
Space-Delay IID model 

 
The model described in Section 3.2 is considered for parameter estimation, namely, 𝑛𝑛!,#,$ ∼
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁!𝜆𝜆!,#,$, 𝜙𝜙# and 

 
 𝑙𝑙𝑙𝑙𝑙𝑙!𝜆𝜆!,#,$# = 𝜇𝜇 + 𝛼𝛼! + 𝛽𝛽# + 𝛾𝛾!,# + 𝛽𝛽#,$ + 𝜓𝜓$-./ + 𝜓𝜓$01# (5) 

 
with 𝑡𝑡 = 1,⋯ ,66	(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤), 𝑑𝑑 = 0,⋯ ,𝐷𝐷	(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), and 𝑠𝑠 = 1,⋯ ,27	(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). The 
quantities are defined as follows: 
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• 𝜇𝜇 is the log-scale overall mean count and a fixed effect 𝜇𝜇 was set an improper prior proportional 
to one. 

• the random effects 𝛼𝛼! captures the mean temporal evolution of the count-generating process. 
• 𝛽𝛽# capture the mean structure of the delay mechanism using random walks, in the simplest 

case, first-order ones. 
• 𝛾𝛾!,# is the time-delay interaction term. 
• 𝛽𝛽#,$ ∼ 𝑁𝑁!𝛽𝛽#)*,$, 𝜔𝜔6

,# allow for unstructured spatio-delay variability. 
• 𝜓𝜓$-./ is spatially structured according to an IAR process with a neighboring structure defined 

by a 27 × 27 adjacency matrix W, where 𝑤𝑤0,7 = 1 if the province i is an administrative neighbor 
of province j and 𝑤𝑤0,7 = 0, otherwise. 

• 𝜓𝜓$01# ∼ 𝑁𝑁!0, 𝜎𝜎8,# captures spatially unstructured variability. 
 

When constructing a spatio-temporal statistical model, the Bayesian approach requires us to assign 
prior probability distributions (a mathematical way to reflect our prior belief) to all the unknown 
parameters.  This gives rise to several advantages when analyzing spatio-temporal data, impacting on 
every aspect of statistical analysis from model building, parameter estimation, and interpretation to 
model evaluation. 
 
Nowcasting 

 
Nowcasting is defined as the process of predicting the present, the very recent past, and the 

very near future using time series data known to be incomplete (Blangiardo, et al. 2013).  At any given 
time step T, there are a number of occurred-but-not-yet-reported (missing) values 𝑛𝑛!,#,$, 𝑡𝑡 = 𝑇𝑇 − 𝐷𝐷 +
1,⋯ , 𝑇𝑇; 𝑑𝑑 = 1,⋯ ,𝐷𝐷; 𝑠𝑠 = 1,⋯ ,27, as well as the marginal totals 𝑁𝑁9 − 𝐷𝐷 + 1,⋯ ,𝑁𝑁9.  The total, 𝑁𝑁9 is 
obviously of primary interest and must be nowcast; however, hindcasts of 𝑁𝑁9 − 𝐷𝐷 + 1,⋯ ,𝑁𝑁9)* may 
also be of interest, particularly if one wishes to quantify the rate of increase or decrease in the counts.  
The posterior predictive distribution given by 

 
 𝑝𝑝!𝑛𝑛!,#,$r𝐧𝐧# = t 𝑝𝑝!𝑛𝑛!,#r𝜃𝜃#𝑝𝑝(𝜃𝜃|𝐧𝐧)𝑑𝑑𝑑𝑑

𝜽𝜽

, (6) 

where n stands for all the data used to fit the model, can be used to estimate all the missing 𝑛𝑛!,#,$ in this 
prediction problem.  However, analytical solutions are not possible, but Monte Carlo simulations can 
be used to approximation.  In reality, simulation of values from a negative binomial 𝑝𝑝!𝑛𝑛!,#rθ# for each 
sample with posterior, 𝑝𝑝(𝜃𝜃|𝐧𝐧) can generate a rough sample from the predictive distribution, 𝑝𝑝(𝑛𝑛!,#|𝒏𝒏).  
Equivalent samples can be produced from 𝑝𝑝(𝑁𝑁!),  the marginal totals, once posterior predictive samples 
of 𝑁𝑁!,# are available.  As shown in small-area estimation, for instance in the work of (Vandendijck et 
al. 2016), samples from an approximation of the joint posterior distribution can be acquired from R-
INLA using the inla.posterior.sample() function. 
 
 
IV. MODEL ESTIMATION 

 
The goal of this study is to use the proposed model to correct reporting delays by taking into 

consideration the changes in the delay mechanism's spatial and temporal characteristics. Without the 
use of covariates, the proposed delay model was applied, and the predicted cases were calculated using 
the predictive posterior distribution. The model can be used to directly nowcast or correct reports from 
previous days for the delay.  The delay parameter d is a stand-alone variable in the model, allowing it 
to predict the missing cells directly, by setting it to the necessary value in the data vector used for 
predictions. 

 
The data used in this study consist of weekly counts of COVID-19 reports aggregated at the 

provincial level. Data were extracted from the Department of Health (DOH) Data Drop starting from 
January 1, 2020 and ending on April 30, 2021 (70 weeks) for the whole island of Mindanao, Philippines.  
The island of Mindanao is divided into 449 municipalities, and each municipality belongs to one of the 
27 provinces.  The goal is to use the proposed model to correct reporting delays across the provincial 
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level, considering spatial variability in the delay mechanism and the disease process, as well as allowing 
for spatial dependence in neighboring regions. 

 
Figure 1 shows the total number of COVID-19 cases from the month of March 2020 up to April 

2021.  The black solid line shows the actual number of cases, and the solid red line shows the reported 
cases with delay for the last 4 weeks up to and including the 14th pandemic week ending on April 30, 
2021. 

 

 
  
 Figure 1. Total number of COVID-19 Cases in Mindanao from March 2020- April 2021. 

 
 The term 𝑿𝑿𝒕𝒕,𝒅𝒅,𝒔𝒔( 𝜹𝜹  in Equation 2 is set to zero since no covariate information is available in the 
data set. Hence, the final spatio-temporal model is given by, 
 

 𝑙𝑙𝑙𝑙𝑙𝑙!𝜆𝜆!,#,$# = 𝜇𝜇 + 𝛼𝛼! + 𝛽𝛽# + 𝛾𝛾!,# + 𝛽𝛽#,$ + 𝜓𝜓$-./ + 𝜓𝜓$01#. (7) 
 
The model assumes that the delay structure varies across provinces, through 𝛽𝛽#,$ while the overall 
temporal evolution of the disease counts 𝛼𝛼! is the same across the provinces.  This is because the 
provinces are close to each other, and we would not expect the disease transmission to vary 
considerably across space.  Similarly, the interaction term 𝛾𝛾!,# is spatially constant.  The term 𝜓𝜓$-./ +
𝜓𝜓$01# captures overall similarity in disease counts across the provinces; however, it also allows for some 
provinces to be different (on average), if there is such evidence in the data. 
 

Table 3 presents the posterior estimates with their precision for the random effects of the spatio-
temporal model estimated by INLA.  It shows the various random effects associated with its posterior 
mean !𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛;#, posterior standard error !𝑆𝑆𝐷𝐷;#, and uncertainty in the form 95% credible intervals 
with the lower and upper limits, which are 25% and 97.5%, respectively. Lastly, the posterior median 
estimates are in the 50% column. 

      
         Table 3. Random effects precision of posterior estimates for the spatio-temporal model. 

	 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚;	 𝑆𝑆𝑆𝑆;	 2.5%	 50%	 97.5%	
𝛼𝛼!	 9.201	 1.475	 7.207	 8.888	 12.877	
𝛽𝛽#	 0.699	 0.580	 0.038	 0.541	 2.112	
𝛾𝛾!,#	 9.955	 1.278	 8.382	 9.655	 13.189	
𝛽𝛽#,$	 4.066	 1.510	 2.516	 3.637	 8.057	
𝜓𝜓$-./	 36.595	 27.930	 10.116	 28.525	 110.587	
𝜓𝜓$01#	 7.862	 0.831	 5.987	 7.986	 9.070	

 
Figure 3 shows the posterior mean with 95% credible intervals for time random effects, 𝛼𝛼!.  

The time series on the weekly COVID-19 starts from the 1st epidemic week of the year 2020 and ends 
at the 14th epidemic week of the year 2021. 
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Figure 2. Posterior mean with 95% credible intervals for time on the weekly COVID-19 cases. 
 

As shown in the figure, the COVID-19 count has a sudden increase from March to April, or about the 
10th to 13th week of 2020, and a gradual increase and slight fluctuations from about the 14th week of 
2020 up to the 14th week of 2021.  Further, it can be observed that the number of COVID-19 cases 
increases as the time approaches 2021 compared to the year 2020.  Moreover, the overall temporal 
effects do not follow any seasonal pattern. 
 

Posterior mean estimates of the delay mechanism, which is different across provinces, β# +
β#,$, are shown in Figure 3.  

 
Figure 3. Posterior mean of the space-delay random effects by province. 

 
Observe that the mean reporting count decreases with delay (in weeks), on the average.  

However, there is considerable variability across the regions, particularly during the second and third 
weeks of delay.  This reflects the fact that delays are likely related to several factors such as between-
region differences, improvements in reporting efficiency over time, and/or weekly cycles which vary 
considerably in space. 
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Moreover, posterior mean estimates of the time-delay interaction term λ!,#, where d = 0,1,2,3,4 
weeks are shown in Figure 4.  For d = 0 (no delay), the number of COVID-19 cases associated with 
the temporal evolution clearly increases. Additionally, the temporal evolution for d = 0 (no delay) and 
d = 1 (1-week delay) is negative in the first quarter of each week, indicating that quicker notifications 
or reports of cases when they are discovered may result from potential epidemic awareness. For d = 
2,3,4, respectively, the mean lies near zero in the first quarter of each week but fluctuates in later weeks 
up to the 14th week of 2021.  It does not show an increasing trend of delayed reports, but an inconsistent 
delay.  This is probably due to fewer improvements in reporting efficiency over time.  The delay random 
effect shows the importance of the delays as the number of weeks increases, and the delay should not 
be neglected since it has a significant effect on the real-time case notification. 

 

 
Figure 4. Posterior mean of the time-delay random effects λ*,$ for d=0,1,2,3,4 

 
Figure 5 shows the posterior mean estimates of the overall spatial variability term, 𝛹𝛹$

(-./) +
𝛹𝛹$
(01#). The plot indicates some variability in the number of COVID-19 reports across the provinces, 

but also a similarity in neighbouring regions.  This may be reflecting the unobserved factors relating to 
the susceptible population (including population size).  The delay can vary from place to place, being 
susceptible to the adherence of health care providers to the notification protocol as well as the access 
of patients to health care and health system shortcomings. 

 
Figure 5. Posterior mean of the COVID-19 spatial random effect ψ!. 

 
In order to assess whether the spatial correlation was adequately captured, consider the measure or 
statistic R computed as follows: 

𝑅𝑅	 = 	
𝑣𝑣𝑣𝑣𝑣𝑣(𝜓𝜓$-./)

𝑣𝑣𝑣𝑣𝑣𝑣!𝜓𝜓$-./ + 𝜓𝜓$01##
	. 

 



Jejemae D. Nacion  and Bernadette F. Tubo | 33

The statistics R quantifies the contribution of the structured random effect ψ$-./ to the total variance of 
the spatial effect ψ$-./ + ψ$01#. Based on Figure 6, the value of R is on the average equal to 0.5, 
indicating that structured and unstructured spatial effects contribute roughly equally.  It is to note that 
if value of R is close to zero, this indicates that there is little spatial correlation, whereas a value greater 
than 1 indicates that the structured random effects are capturing most of the variability (a nonzero 
correlation). 
 

 
Figure 6. Posterior distribution of the statistic R. 

 
Figure 7 (7.A and 7.B) shows the time series plot of reported COVID-19 cases, as well as 

predictions or nowcast values in the whole island of Mindanao as the maximum possible delay, which 
is set to 4 weeks.  It is to note that Figures 8.A and 8.B differ only on the time scale, where A starts 
from January 2020, whereas B starts from January 2021.  It also depicts the estimated mean as well as 
the 95% prediction intervals (dotted black line and shaded region) of the corresponding predictive 
distribution from Equation 5, that is,  𝑛𝑛!,#,$ ∼ 𝑁𝑁𝑁𝑁𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵!λ!,#,$, ϕ#, where 𝑙𝑙𝑙𝑙𝑙𝑙!λ!,#,$# = µ + α! + β# +
γ!,# + β#,$ + ψ$-./ + ψ$01#.  The plot also shows the weekly time series of the eventually reported 
COVID-19 cases from the first epidemic week of 2020 to the 14th epidemic week of 2021 (solid black 
line in Figure 7.A) and COVID-19 cases from the first epidemic week of 2021 to the 14th epidemic 
week of 2021 (solid black line in Figure 7.B).  Finally, the plot also shows the currently reported number 
of COVID-19 cases for the last 4 weeks, up to and including the 14th epidemic week ending on April 
2, 2017 (dashed red line).   
 

 
 

 

 
Figure 7. Time series plot of the aggregated COVID-19 cases in Mindanao, Philippines. 
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It can be observed in week 14 that the currently reported number of cases is 𝑛𝑛*<,=	= 1633, and 
the eventually reported count is ∑ 𝑛𝑛*<,#<

#>= = 1710, while the predicted value for 𝑁𝑁! is 1708, also 
shown in Table 4.  Hence, the proposed model is able to capture the increasing trend of the disease 
counts, and the predictions are much closer to the true value compared to the currently reported counts 
(which actually indicate a decline). 

 
   Table 4. COVID-19 cases for the last 4 weeks ending on April 30, 2021 (14th week). 

2021 
epidemic 

week 

currently 
reported 

cases 

eventually 
reported 

(observed) 

predicted 
cases 

RMSE 
(observed vs 

predicted) 
10th week 1235 1235 1235 

2.0 
11th week 1120 1129 1123 
12th week 1260 1266 1276 
13th week 1397 1417 1419 
14th week 1633 1710 1708 

 
Furthermore, the root mean square error (RMSE) is computed to measure the difference 

between predicted values and observed values. Statistically, the larger the difference indicates a larger 
gap implying a poor model fit. Consequently, a smaller RMSE implies a better model.  Based on the 
result shown in Table 4, the RMSE is equal to 2.0, on the average, which is low and it suggests a more 
accurate prediction. 

 
Finally, nowcasting estimation is of utmost importance in order to provide accurate and reliable 

estimations to avoid misclassification of warning issuance.  These disease-specific quantities provide a 
tool for setting goals for reporting delays, not only for outbreak control but also for evaluation of 
individual-based interventions with other aims, such as partially reducing infections or completely 
stopping transmission. 

 
 
V. CONCLUSION 
 
 In disease surveillance, the spatial and temporal components in a pandemic or disease outbreaks 
are essential so that the strength, direction, and trend of the disease transmission are considered.  The 
necessity in a disease outbreak lies in predicting or nowcasting the total number of disease cases, 𝑛𝑛!,#,$, 
to aid health authorities to have effective control measures and issuance of warnings to the public.  The 
Bayesian hierarchical framework is implemented in R-INLA to explore the possibility of a flexible way 
of correcting delayed reports considering time and space, that is, a spatio-temporal model.  Results 
show that the proposed model was able to capture the increasing trend of COVID-19 disease counts in 
the presence of delayed reports.  
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