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Editorial

The second publication of the 70th volume of The Philippine Statistician 
includes five papers exploring applications of statistical theories and methods.  
Z. Algamal and co-authors propose a modified logistic ridge estimator to decrease 
shrinkage parameter and improve the resultant estimator with small bias.  
S. Dar and co-authors illustrate a new compound probability model applicable 
by compounding Poisson distribution with two parameter Pranav distribution to 
count data while S. Khare and co-authors analyze classes of estimators under 
new calibration schemes using non-conventional measures of dispersion. Z. F. 
Althobaiti and A. Shabri investigate the economic aspects of gas emissions and 
predict CO2 emissions using annual time series data in Saudi Arabia. M. Ghalibaf 
presents two new tests for tail independence in extreme value models.

 This publication will not be possible without the time, effort and expertise 
of our editorial board members, the editorial staff, the secretariat and anonymous 
reviewers. My gratitude also go to the authors of the papers in this journal, as 
well as other authors of papers that have undergone review for publication. 
To the authors of the papers who have successfully gone through the editorial 
process, the editorial staff of the journal highly appreciate your contributions to 
push research in Statistics to greater heights. Everyone’s contributions help in 
preserving the quality and integrity of the publication. Our journal editors will 
continue to uphold the level of trust bestowed to The Philippine Statistician for 
its quality.

Jose Ramon G. Albert
Editor-in-Chief
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A Modified Ridge Estimator for the 
Logistic Regression Model  

Mazin M. Alanaz
Department of Operation Research and Intelligence Techniques,  

University of Mosul, Iraq.

Nada Nazar Alobaidi
Department of Statistics and Informatics,  

University of Mosul, Mosul, Iraq

Zakariya Yahya Algamal*
Department of Statistics and Informatics 

University of Mosul, Iraq

The ridge estimator has been consistently demonstrated to be an 
attractive shrinkage method to reduce the effects of multicollinearity. The 
logistic regression model is a well-known model in application when the 
response variable is binary data. However, it is known that multicollinearity 
negatively affects the variance of maximum likelihood estimator of the 
logistic regression coefficients. To address this problem, a logistic ridge 
regression model has been proposed by numerous researchers. In this 
paper, a modified logistic ridge estimator (MLRE) is proposed and derived. 
The idea behind the MLRE is to get diagonal matrix with small values of 
diagonal elements that leading to decrease the shrinkage parameter and, 
therefore, the resultant estimator can be better with small amount of bias. 
Our Monte Carlo simulation results suggest that the MLRE estimator can 
bring significant improvement relative to other existing estimators. 

Keywords:	 multicollinearity,  ridge estimator, logistic regression model,  
shrinkage, Monte Carlo simulation

I. 	 Introduction
Logistic regression model is widely applied for studying several real data 

problems, such as in medicine (Algamal and Lee 2015a). In dealing with the 

*	 Corresponding author: zakariya.algamal@uomosul.edu.iq
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logistic regression model, it is assumed that there is no correlation among the 
explanatory variables. In practice, however, this assumption often not holds, which 
leads to the problem of multicollinearity. In the presence of multicollinearity, 
when estimating the regression coefficients for logistic regression model using the 
maximum likelihood (ML) method, the estimated coefficients are usually become 
unstable with a high variance, and therefore low statistical significance (Kibria 
et al. 2015). Numerous remedial methods have been proposed to overcome the 
problem of multicollinearity. The ridge regression method (Hoerl and Kennard 
1970) has been consistently demonstrated to be an attractive and alternative to the 
ML estimation method.

Ridge regression is a shrinkage method that shrinks all regression coefficients 
toward zero to reduce the large variance (Asar and Genç 2015; Rashad and 
Algamal 2019). This is done by adding a positive amount to the diagonal of XTX. 
As a result, the ridge estimator is biased but it guaranties a smaller mean squared 
error than the ML estimator.  

In linear regression, the ridge estimator is defined as

1ˆ ( ) ,T T
Ridge k −= +X X I X yβ 	 (1)

where y is an n x 1 vector of observations of the response variable, X = (x1 ,…, xp) 
is an n x p known design matrix of explanatory variables, β = (β1,…, βp) is a p x 1 
vector of unknown regression coefficients, I is the identity matrix with dimension 
p x p, and k ≥ 0 represents the ridge parameter (shrinkage parameter). The ridge 
parameter, k, controls the shrinkage of β toward zero. The OLS estimator can be 
considered as a special estimator from Eq. (1) with k = 0. For larger value of k, the 
ˆ

Ridgeβ estimator yields greater shrinkage approaching zero (Algamal and Lee 
2015b; Hoerl and Kennard 1970). 

2. 	 Logistic Ridge Regression Model
Logistic regression is a statistical method to model a binary classification 

problem. The regression function has a nonlinear relation with the linear 
combination of the variables. In binary classification, the response variable of the 
logistic regression has two values either 1 for the tumor class, or 0 for the normal 
class. Let yi ∈ {0,1} be a vector of size n x 1 of tissues, and let xj be a p x 1 vector 
of variables. The logistic transformation of the vector of probability estimates  
πi = p(yi = 1|xj) is modeled by a linear function, logit transformation, 

	 [ ] 0
1

ln 1 , 1,2,..., ,
P

T
i i j j

j
i nπ π β β

=

− = + =∑x 	 (2)

where β0 is the intercept, and βj is a p x 1 vector of unknown variable coefficients. 
The log-likelihood function of Eq. (1) is defined as
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{ }0
1

( , ln ( ) (1 ) ln(1 ( ) .
n

i ij i ij
i

β π π
=

) = + − −∑ y x y x β 	 (3)

Logistic regression offers the advantage of simultaneously estimating the 
probabilities π(xij) and 1–π(xij) for each class and classifying subjects. The 
probability of classifying the ith sample in class 1 is estimated by 

0 0
1 1

ˆ exp 1 exp
p p

T T
i j j j j

j j
π β β β β

= =

   
= + + +   

   
∑ ∑x x  (Algamal and Lee 2017; 

Algamal and Lee 2018; Algamal et al. 2017). The predicted class is then obtained 
by { }ˆ 0.5 ,iI π >  where I(•) is an indicator function. The ML estimator is then 
obtained by computing the first derivative of the Eq. (2) and setting it equal to 
zero. Then, ML estimators of the logistic regression parameters (LRM) as 

	
1ˆ ˆ ˆ ˆ( ) ,T T

LRM
−= X WX X Wvβ 	 (4)

where ˆˆ diag( )iθ=W  and v̂  is a vector where ith element equals to logit link 
function. The ML estimator is asymptotically normally distributed with a 
covariance matrix that corresponds to the inverse of the Hessian matrix

12
1( )ˆ ˆcov( ) ( ) .T

LRM
i k

E
β β

−

−  ∂
= − =  ∂ ∂  

X WX β
β

	

(5)

The mean squared error (MSE) of Eq. (5) can be obtained as
ˆ ˆ ˆ ˆ ˆMSE( ) ( ) ( )T

LRM LRM LRME= − −β β β β β

                    1ˆ( )Ttr − =  X WX
	

(6)	

                    
1

1 ,
p

j jλ=

= ∑

where λj is the eigenvalue of the ˆTX WX  matrix. 

In the presence of multicollinearity, the matrix ˆTX WX  becomes ill-
conditioned leading to high variance and instability of the ML estimator of the 
Poisson regression parameters (Algamal 2018a; Algamal 2018b; Algamal and 
Alanaz 2018; Algamal and Asar 2018; Alkhateeb and Algamal 2020; Yahya 
Algamal 2018). As a remedy, Schaefer et al. (1984) proposed the logistic ridge 
regression model (LRRM) as
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1ˆ ˆˆ ˆ( )T T
LRRM LRMk −= X WX + I X WXβ β

          
1ˆ ˆ ˆ( )T Tk −= X WX + I X Wv,

	
(7)

where k ≥ 0. The ML estimator can be considered as a special estimator from Eq. 

(7) with k = 0. Regardless of k value, the MSE of the ˆ
LRRMβ  is smaller than that of 

ˆ
LRMβ because the MSE of ˆ

LRRMβ is equal to (Asar et al. 2017; Asar and Genç 2015; 
Kibria et al. 2012; Lukman et al. 2020; Månsson et al. 2011; Schaefer et al. 1984; 
Wu et al. 2016)

2
2 2

1 1

ˆMSE( ) ,
( ) ( )LR M

p p
j

j
R

j

jj j
k

k k
λ α

λ λ= =

= +
+ +∑ ∑β

	

(8)
	

where αj is defined as the jth element of ˆ
LRMγβ and γ is the eigenvector of the 

ˆTX WX matrix. Comparing with the MSE of Eq. (6), ˆMSE )LRRM(β  is always 
small for k > 0.

3. 	 The New Estimator
In this section, the new estimator is introduced and derived. Let  

M = (m1, m2,…, mp) and Λ = diag (λ1, λ2, …, λp), respectively, “be the matrices of 
eigenvectors and eigenvalues of the ˆTX WX  matrix, such that  

ˆ ˆ ,T T T ΛM X WXM = S WS = where S = XM. Consequently, the logistic regression 

estimator of Eq. (4), ˆ
LRMβ , can be written as

1 ˆˆ ˆ
ˆ ˆ .

T
LRM

LRM LRM

S−= Λ Wv

= M

γ

β γ
	

(9)

Accordingly, the logistic ridge estimator, ˆ
LRRMβ , is rewritten as

1

1

ˆˆ ( )
ˆ ,

T
LRRM

LRM

−

−

= +

−

K S Wv
          = (I KD )
γ Λ

γ
 	 (10)

where D = Λ + K and K = diag(k1, k2, …, kp); ki ≥ 0, i = 1,2, …, p. 
In generalized ridge estimator, the Jackknifing approach was used (Khurana 

et al. 2014; Nyquist 1988; Singh et al. 1986). Batah et al. (2008) proposed a 
modified Jackknifed ridge regression estimator in linear regression model. 

In this paper, the modified estimator (MLRE) is derived by following the 
study of Batah et al. (2008). Let the Jackknife estimator (JE), in logistic regression, 
defined as 
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2 2ˆ ˆ( ) ,JE LRM
−= −I K Dγ γ 	  (11)

and the modified Jackknife estimator (MJE) of  Batah et al. (2008), in logistic 
regression model, is defined as

1 2ˆ ˆ( )( ) .MJE LRM
− −= − − 2I KD I K Dγ γ 	 (12)

Consequently, our modified estimator is an improvement of Eq. (12) by 
multiplying it with the amount [(I–K3D-3) / (I–K2D-2). The idea behind this is 
to get diagonal matrix with small values of diagonal elements which leading to 
decrease the shrinkage parameter, and, therefore, the resultant estimator can be 
better with small amount of bias. The new estimator is defined as 

3 3
1 2 2

2 2

( )ˆ ˆ( )( ) ,
( )

MLRE LRM
−

− −
−

−
= − −

−
I K DI KD I K D
I K D

γ γ 	 (13)

and 

ˆ ˆ .T
MLRE MLRE= Mβ γ 	 (14)

4.	 Bias, Variance, and MSE of the New Estimator
The MSE of the new estimator can be obtained as

[ ]2ˆ ˆ ˆMSE( ) var( ) bias( )MLRE MLRE MLRE= +γ γ γ 	
(15)

		
	 According to Eq. (15), the bias and variance of ˆ MLREγ  can be obtained as, 
respectively, 

[ ]
[ ]1 3 3

1 1 1 1 1 2 2 1 1

ˆ ˆbias( )

ˆ( )( )

( ) ( ) ( ) ( ) ,

MLRE MLRE

MLRE

E

E γ γ

γ

− −

− − − − − − − −

= −

− Ι − −

 = − − − + − 

D D

D D I D D I D D

γ

                 = Ι Κ Κ  

                 Κ Κ Κ Κ Κ Κ

γ γ

	 (16)

1 3 3 3 3 1

1 3 3 1 3 3 1

ˆ ˆvar( ) ( )( )var( )( ) ( )
( )( ) ( ) ( ) .

T T
MLRE MLRE

T T

− − − −

− − − − −

− − − −

− − Λ − −

D D D D
D D D D

γ = Ι Κ Ι Κ γ Ι Κ Ι Κ

                = Ι Κ Ι Κ Ι Κ Ι Κ
 	

(17)
Then, 

1 3 3 1 3 3 1

1 1 1 1 1 2 2 1 1

1 1 1 1 1 2 2 1

ˆMSE( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T
MLRE

                        

                        

− − − − −

− − − − − − − −

− − − − − − −

− − Λ − − +

  − − + −  

 − − + − 

D D D D

D D D D D D

D D D D D D

γ = Ι Κ Ι Κ Ι Κ Ι Κ

−Κ Κ Κ Ι Κ Κ Ι Κ γ

−Κ Κ Κ Ι Κ Κ Ι Κ 1

1 1 1 ,

T

T T T                        

−

− − −

  
= + D D

γ

ΦΛ Φ ΚΨ γγ Ψ Κ

	
	 (18)
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where Φ = (I – K3D-3)T (I – KD-1) and Ψ = [I + KD-1 – KD-3K].

2.7. Selection of parameter k 
The efficiency of ridge estimator strongly depends on appropriately choosing 

the k parameter. To estimate the values of k for our new estimator, the most well-
known used estimation methods are employed and are given below (Kibria et al. 
2015). 

1. Hoerl and Kennard (1970) (HK), which is defined as 
2

2
max

ˆ
(HK) , 1,2,..., ,jk j pσ

α
= =

	
(19) 

where 2 2

1

ˆˆ ( ) / 1.
n

i i
i

y n pσ θ
=

= − − −∑

2. Kibria et al. (2015) (KMS1), which is defined as

2
2

2

ˆ
(KMS1) Median , 1,2,... ,

ˆj
j

k j pσ
α

   = =  
     	 (20)

	

	3. Kibria et al. (2015) (KMS2), which is defined as

max
2 2

max

(KMS2) Median , 1,2,... ,
ˆˆ( )j

j

k j p
n p

λ
σ λ α

  = = − +  
	

(21)

5. 	 Simulation Study 
In this section, a Monte Carlo simulation experiment is used to examine the 

performance of the new estimator with different degrees of multicollinearity. 
The response variable of n observations is generated from Bernoulli 

distribution regression model by 

exp( ) ,
1 exp( )

T
i

i T
i

π =
+

x
x
β

β 	 (22)

where  β = (β0, β1,…, βp) with 2

1
1

p

j
j

β
=

=∑  and β1 = β2  = …, = βp (Kibria 2003; 

Månsson and Shukur 2011).
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The explanatory variables xi
T = (xi1, xi2,…, xin), have been generated from the 

following formula 
xij = (1– ρ2)1/2 wij + ρwip, i = 1, 2,…, n,  j = 1,2,…, p,                             (23)

where ρ represents the correlation between the explanatory variables and wij’s 
are independent standard normal pseudo-random numbers. Because the sample 
size has direct impact on the prediction accuracy, three representative values of 
the sample size are considered: 30, 50 and 100. In addition, the number of the 
explanatory variables is considered as p = 4 and p = 8 because increasing the number 
of explanatory variables can lead to increase the MSE. Further, because we are 
interested in the effect of multicollinearity, in which the degrees of correlation are 
considered more important, three values of the pairwise correlation are considered 
with ρ = {0.90,0.95,0.99). For a combination of these different values of n, p, and 
ρ, the generated data is repeated 1000 times and the averaged mean squared errors 
(MSE) is calculated as 

	
1000

1

1ˆ ˆ ˆMSE( ) ( ) ( ),
1000

T

i=
= ∑β β − β β − β  	 (23)

where β̂ is the estimated coefficients for the used estimator.  

6. 	 Simulation Results
The estimated MSE of Eq. (24) for MLE, LRM, and MLRE, for all the 

different selection methods of k and the combination of n, p, and ρ, are summarized 
in Tables 1, 2, and 3, respectively. Several observations can be made.  

First, in terms of ρ values, there is increasing in the MSE values when the 
correlation degree increases regardless of the value of n, p. However, MLRE 
performs better than LRM and MLE for all the different selection methods of k. 
For instance, in Table 1, when p = 8  and ρ = 0.99, the MSE of MLRE was about 
4.38%, 3.13%, and 2.86% lower than that of LRM for KH, KMS1 and KMS2, 
respectively. In addition, the MSE of MLRE was about 53.51% lower than that 
of MLE.

Second, regarding the number of explanatory variables, it is easily seen that 
there is increasing in the MSE values when the p increasing from four variables 
to eight variables. Although this increasing can affect the quality of an estimator, 
MLRE is achieved the lowest MSE comparing with MLE and LRM, for different 
n, p and different selection methods of k. 

Third, with respect to the value of n, the MSE values decrease when n 
increases, regardless of the value of ρ, p, and the value of k. However, MLRE still 
consistently outperforms LRM and MLE by providing the lowest MSE.  

M. Alanaz et al. 
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Finally, for the different selection methods of k, the performance of all methods 
suggesting that the MLRE estimator is better than the other two estimators used. 
The KMS1 efficiently provides less MSE comparing with the KMS1 and KH for 
both MLRE and LRM estimators. Besides, KH is more efficient for providing less 
MSE than KMS2 or both MLRE and LRM estimators.

To summarize, all the considered values of n, p, ρ, and the value of k, MLRE 
is superior to LRM, clearly indicating that the new proposed estimator is more 
efficient.

Table 1. MSE values when n = 30 
KH KMS1 KMS2

ρ MLE LRM MLRE LRM MLRE LRM MLRE

p = 4

0.90 6.367 2.406 2.253 2.046 1.945 2.791 2.691

0.95 6.995 2.637 2.486 2.495 2.394 2.952 2.849

0.99 7.393 3.287 3.135 3.027 2.926 3.296 3.195

p = 8

0.90 6.472 2.608 2.455 2.238 2.137 2.986 2.885

0.95 7.091 2.839 2.686 2.687 2.586 3.145 3.044

0.99 7.506 3.489 3.336 3.219 3.118 3.491 3.391
	

Table 2. MSE values when n = 50 
KH KMS1 KMS2

ρ MLE LRM MLRE LRM MLRE LRM MLRE

p = 4

0.90 6.04 2.079 1.926 1.719 1.618 2.464 2.363

0.95 6.668 2.312 2.159 2.168 2.067 2.623 2.522

0.99 7.066 2.962 2.808 2.711 2.599 2.969 2.868

p = 8

0.90 6.145 2.281 2.128 1.911 1.811 2.659 2.558

0.95 6.764 2.512 2.359 2.362 2.259 2.818 2.717

0.99 7.179 3.162 3.009 2.892 2.791 3.164 3.063
	

Table 3. MSE values when n = 100
KH KMS1 KMS2

ρ MLE LRM MLRE LRM MLRE LRM MLRE

p = 4

0.90 5.628 1.667 1.514 1.307 1.206 2.052 1.951

0.95 6.256 1.898 1.747 1.756 1.655 2.211 2.112

0.99 6.654 2.548 2.396 2.288 2.187 2.557 2.456

p = 8

0.90 5.733 1.869 1.716 1.499 1.398 2.247 2.146

0.95 6.352 2.141 1.947 1.948 1.847 2.406 2.305

0.99 6.767 2.751 2.597 2.481 2.379 2.752 2.651
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7. 	 Conclusion
In this paper, a modified estimator of logistic ridge regression is proposed 

to overcome the multicollinearity problem in the logistic regression model. 
According to Monte Carlo simulation studies, the modified estimator has a better 
performance than the maximum likelihood estimator and ordinary logistic ridge 
estimator, in terms of MSE. In conclusion, the use of the modified estimator is 
recommended when multicollinearity is present in the logistic regression model.
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In this paper, we obtained a new model for count data  by compounding 
of Poisson distribution with two parameter Pranav distribution. Important 
mathematical and statistical properties of the distribution have been 
derived and discussed. Then, parameter estimation is discussed using 
maximum likelihood method of estimation. Finally, real data set is 
analyzed to investigate the suitability of the proposed distribution in 
modeling count data.
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1. 	 Introduction
There has been a growing concern from the last few decades to obtain flexible 

parametric probability distributions that can be used to model different types of 
data sets which cannot be quartered by classical distributions. To obtain such 
flexible distributions, compounding of probability distribution is comprehensive 
and advanced technique as it provides a very powerful way to enlarge common 
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parametric families of distribution to fit data sets that is not adequately fitted by 
classical probability distributions. Bhati et al. (2015) derived a new generalized 
Poisson Lindley distribution that finds applications in automobile insurance 
and epileptic seizure counts. Shaban (1981) built a new compound probability 
model for analysing count data by compounding Poisson distribution with 
Inverse Gaussian distribution that finds application in accidents analysis. Hassan 
S. Bakouch (2018) derived a count data probability model by compounding 
weighted negative binomial and Lindley distribution. Simon (1955) constructed 
a new probability model for count data by compounding Poisson with beta 
distribution. Pielou (1962) obtained a new compound distribution by mixing 
Poisson with exponential beta distribution. Sankaran (1969) constructed a class 
of compound Poisson distribution. Rai (1971) presented a compound of Poisson 
power function distribution. Mahmoudi et al. (2018) introduces a new probability 
model for count data by compounding Poisson with beta exponential distribution 
and taking Poisson distribution as parent distribution. Stacy (1962) derived a three 
parameter life time generalized gamma distribution. Shanker and Fesshaye (2015) 
introduced a new compounding probability model for count data, by compounding 
Poisson distribution with Lindley distribution and find its applications in biological 
science. Aryuyen and Bodhisuwan (2013) obtained a new compound probability 
model by combining Negative Binomial distribution with generalized exponential 
distribution. Willmot (1987) introduced the Poisson-inverse Gaussian distribution 
as an alternative to the negative binomial through compounding machansim. 
Hassan, Dar and Ahmad (2019) introduced a new compounding probability model 
for count data, by compounding Poisson distribution with Ishita distribution and 
find its applications in epileptic seizure. Lord and Geedipall (2011) showed that 
Poisson distribution tends to under estimate the number of zeros given the mean 
of the data while the negative Binomial distribution over estimates zero, but under 
estimate observations with a count. Umeh and Ibenegbu (2019) introduced a two 
parameter pranav distribution for lifetime data modeling.

In this paper we propose a new count data model which has been built by 
compounding Poisson distribution with two parameter Pranav distribution and 
taking Poisson distribution as a parent distribution, as there is a need to find more 
flexible models for analyzing count data.

2. 	 Definition of Proposed Model  
	 (Poisson two parameter Pranav distribution)

 If Z |v ~ P(v), where v being itself a random variable following Poisson two 
parameter Pranav distribution with parameters ζ and η, then determining the 
distribution that results from marginalizing over v will be known as compound 
Poison distribution with that of two parameter Pranav distribution, which is 
denoted by PTPPD (Z; ζ, η). Our proposed model will be discrete as parent 
distribution is a discrete.



13

Theorem 1. The probability mass function of a Poisson two parameter  
Pranav Distribution, i.e., PTPPD (Z; ζ, η) is given by

4 3

4 4

(1 ) ( 3)( 2)( 1)( )
( 6) (1 )z

z z zP Z z ζ ζη ζ
ζ η ζ +

 + + + + +
= =  + +   

; z = 0,1,2,3,...,;ζ, η>0

Proof: The pmf of a Poisson two parameter Pranav distribution can be obtained as
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The compound of Poisson distribution and two parameter Pranav distribution 
is given as
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  Figure 1 shows the pmf plot for the different values of η and ζ . 

S.A Dar et al. 



14 The Philippine Statistician Vol. 70, No. 2 (2021)

The corresponding cdf of Poisson two parameter Pranav distribution is given 
as

2 2 2 2 2 2 2 3 3 3 4 5 6 7

4 4

6 24 6 36 21 3 24 26 9 3 3( ) 1
(6 )(1 )X z

z z z z z zF x ζ ζ ζ ζ ζ ζ ζ ζ ζ ηζ ηζ ηζ ηζ
ηζ ζ +

 + + + + + + + + + + + + +
= −  + + 

2.1. Random data deneration from Poisson weighted Pranav distribution
In order to simulate the data from PTPPD, we employ the discrete version of 

inverse cdf method. Simulating a sequence of a random numbers x1, x2, x3, …, xn 

from PTPP random variable K with pmf 1
0

( ) ,
z

i i i
i

p K x p p =
=

= = ∑  and a cdf  

F(K; ζ, η), where z may be finite or infinite can be described as following steps:

Step 1: Generate a random number u from uniform distribution U (0,1) 
Step 2: Generate random number xi

 
based on

	 if u ≤ p0 = F (x0 : ζ, η) then K = x0

     
0 0 1 1 1

1

0 0

( : , )
.
.
.

( : , )
z z

j j z z
j j

f p u p p F x then K x

if p u p F x then K x

ζ η

ζ η
−

= =

< ≤ + = =

< < = =∑ ∑

In order to generate n random numbers x1, x2, x3,…, xn   from PTPPD, repeat 
step 1 and 2 n times. We have employed R Studio software for running the 
simulation study of proposed model.

3. 	 Special Case
If we put η = 1, then Poisson two parameter Pranav distribution reduces to 

Poisson Pranav Distribution with pmf given as

4 3

4 4

(1 ) ( 1)( 2)( 3)( )
( 6) (1 )z

z z zf z ζ ζ ζη
ζ ζ +

 + + + + +
; =  + + 

4. Reliability Analysis
In this section, we have obtained the reliability and hazard rate function of 

the proposed PTPPD.



15

4.1. Reliability Function 

( )
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4.2 Hazard Function
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5. 	 Factorial Moment of The Proposed Model

Theorem 5.1. The factorial moments of order s of the proposed model is given by
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 Proof: The sth factorial moment about origin of the PTPPD can be obtained as

      μ(s)' = E[E(Z (s)| ν), where Z (s) = Z (Z – 1) (Z – 2)... (Z – s + 1)
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6. 	 Recurrence Relation Between Probabilities
If Z~PTPPD (ζ, η) then the pmf of Z is given as

4 3
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4 3

4 5

(1 ) ( 4)( 3)( 2)( 1)
( 6) (1 )z

z z zP Z z ζ ζη ζ
ζ η ζ +

 + + + + +
= + =  + + 

3

3

( 1) (1 ) ( 4)( 3)( 2)
( ) (1 ) (1 ) ( 3)( 2)( 1)

P Z z z z z
P Z z z z z

ζη ζ
ζ ζη ζ

= + + + + + +
=

= + + + + + +    
 

3

3

(1 ) ( 4)( 3)( 2)( 1) ( )
(1 ) (1 ) ( 3)( 2)( 1)

z z zP Z z P z
z z z

ζη ζ
ζ ζη ζ

+ + + + +
= + =

+ + + + + +                                                                  
                        

7. 	 Estimation of Parameters
In this section, we estimate the unknown parameter of the Poisson two 

parameter Pranav distribution by using method of maximum likelihood estimation.

7.1.	Method of Maximum Likelihood Estimation
Method of Maximum Likelihood Estimation is a simple and the most efficient 

method of estimation. Let Z1, Z2, Z3,…, Zn, be the random size of sample n drawn 
from PTPPD, then the likelihood function of PTPPD is given as
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The above equations can be solved numerically by using R software 3.5.3 
[12].
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8. 	 Monte Carlo Simulation
In order to investigate the performance of ML estimators for a finite 

sample size n using Monte Carlo simulation procedure. Using the inverse 
cdf method discussed in subsection 2.1, random data is generated from 
PTPPD. We took four random variable combinations as ζ = 2.8, η = 1.9,  
ζ = 1.8, η = 1.2, ζ = 0.5, η = 0.2, and ζ = 0.2, η = 0.6 to carry out the simulation 
study and the process was repeated 1000 times by going from small to large  
sample size n = (20, 50, 100, 200, 300 and 500). From Table 1, it is clear that the 
estimated variance and MSEs when sample size increases. Thus, the agreement 
between theory and practice improves as the sample size n increases. Hence, 
the maximum likelihood method performs quite well in estimating the model 
parameters of Poisson two parameter Pranav distribution. 

Table 1.  Average Bias, Variance and MSE of ML Estimates of Poisson Two 
Parameter Pranav Distribution for Different Sample Sizes

n Parameters
ζ = 2.8, η = 1.9 ζ = 1.8, η = 1.2

Bias Variance MSE Coverage
probability Bias Variance MSE Coverage

probability

20 ζ -0.1212 0.00991 0.024599 0.779 0.065141 0.026776 0.031019 0.911

η 0.17434 0.091641 0.122035 0.879 0.044127 0.061243 0.080714 0.924

50 ζ -0.10213 0.006715 0.017145 0.901 -0.00913 0.019104 0.019187 0.929

η 0.14012 0.061288 0.632513 0.916 0.047141 0.021208 0.021208 0.936

100 ζ -0.0934 0.005614 0.014337 0.928 0.011207 0.007472 0.007472 0.938

η 0.07131 0.041271 0.046356 0.931 0.016155 0.000984 0.000984 0.941

200 ζ -0.0746 0.004124 0.009689 0.941 0.008281 0.000912 0.000912 0.948

η -0.0432 0.022131 0.023997 0.949 -0.00925 0.000471 0.000471 0.949

300 ζ -0.0411 0.001971 0.003660 0.951 0.002914 0.000612 0.000612 0.951

η -0.0081 0.000824 0.000824 0.958 0.006714 0.000305 0.000305 0.958

500 ζ -0.01721 0.000341 0.000341 0.961 0.006923 0.000169 0.000216 0.961

η -0.00910 0.000321 0.000321 0.970 0.001247 0.000106 0.000116 0.969

n Parameters
ζ = 0.5, η = 0.2 ζ = 0.2, η = 0.6

Bias Variance MSE Coverage
probability Bias Variance MSE Coverage

probability

20 ζ 0.352110 0.594472 0.718453 0.799 0.439618 1.281363 1.281363 0.891

η 0.347808 0.393186 0.514156 0.839 0.395411 0.599706 0.756055 0.920

50 ζ 0.141019 0.310896 0.330782 0.906 0.485997 0.458776 0.458776 0.932

η 0.092191 0.191920 0.200419 0.936 0.368474 0.239788 0.239788 0.939

100 ζ -0.028951 0.198916 0.199754 0.941 0.246598 0.390818 0.980818 0.943

η 0.058024 0.146899 0.150265 0.948 0.259943 0.193187 0.193187 0.948

200 ζ -0.023804 0.108879 0.109446 0.951 0.138508 0.125871 0.145055 0.953

η 0.003426 0.073616 0.073616 0.954 0.102548 0.094570 0.094570 0.959

300 ζ 0.042858 0.065758 0.065758 0.959 0.038300 0.068572 0.068572 0.964

η 0.059003 0.039284 0.039284 0.962 0.030150 0.032064 0.032064 0.969

500 ζ 0.342880 0.007762 0.007762 0.968 0.323610 0.003848 0.003848 0.972

η 0.327908 0.003491 0.003491 0.974 0.295564 0.006709 0.006709 0.979
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9. 	 Application of Poisson Two Parameter Pranav Distribution
In order to demonstrate the flexibility and applicability of the proposed 

distribution in modeling count data set, we have analyzed a data set representing 
automobile insurance polices (see Klugum et al. 2008), for illustrating the claim 
that PTPPD is providing better fits when compared to PLD, GD, PD, ZIPD and 
NBD. The data has a long right tail and approaches to zero slowly. The data sets 
are given in Table 2.

Table 2. Dataset Representing Automobile Insurance Polices Counts  
(see Klugman et al.  (2008))

Z 0 1 2 3 4 5 6 7 8

Observed 
Counts 7840 1317 239 42 14 4 4 1 0

For estimation of parameters of the distribution, maximum likelihood method 
and R software has been used. Parameter estimates, standard errors and model 
function of the fitted distribution is given in Table 3.

Table 3. Parameter Estimates and Standard Errors for Ffitted Distributions  
for Dataset 2 (Estimated parameters and standard error for fitted distributions for 

dataset representing automobile insurance polices counts)

Distribution
Parameter  
Estimates

(Standard Error)
Model function

PTPPD

ζ = 5.62 (0.4) 

η = 0.08 (0.06)
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We have fitted Poisson two parameter Pranav distribution (PTPPD), zero 
inflated Poisson distribution (ZIPD), geometric distribution (GD), Poisson 
Lindley distribution (PLD), negative binomial distribution (NBD) and Poisson 
distribution (PD) to the data set given in Table 2. In order to check the goodness 
of fit of the model and estimation of parameters of the model, Person’s chi-square 
test R studio statistical software has been used. The results are given in Table 
4. It is clear from the expected frequencies and the corresponding value of chi-
square that Poisson two parameter Pranav distribution provides a satisfactorily 
better fit for the data set representing automobile insurance claims as compared 
to other competing models. It is also clear from Figure 2 the values of expected 
frequencies that Poisson two parameter Pranav distribution provides a closer fit 
than that provided by other competing models. 

Table 4. Fitted PTPPD and Other Competing Models to a Dataset Representing 
Automobile Insurance Polices

Z Observed 
Counts PD ZIPD GD PLD NBD PTPPD

0 7840 627.9 7840 7790.9 7757.7 7879.2 7816.3

1 1317 1703.2 1272.4 1375.25 1381.3 1268.5 1334.6

2 239 2310 296.55 242.75 241.5 248 248.1

3 42 2088.7 46 42.85 41.75 51.3 45.6

4 14 1416.5 5.4 7.55 7.15 10.9 10.1

5 4 768.5 0.5 1.35 1.2 2.4 3.1

6 4 374.4 0.1 0.25 0.2 0.5 2.6

7 1 134.6 0.1 0.1 0.1 0.1 0.5

8 0 64.3 0.1 0.1 0.1 0.1 0.01

Degrees of freedom 4 2 3 3 2 3

Chi-Statistic Value 16517 61.2 23.5 27.4 32.2 3.95

p-value 0 0 0 0 0 0.266

AIC (Akaike information criterion) and BIC (Bayesian information criterion) 
criterions has been used for comparing our proposed model with other competing 
models. The lower values of AIC and BIC corresponds to better fitting of model. 

 As it is clear from Table 5, that the Poisson two parameter Pranav distribution 
has lesser values of AIC and BIC as compared to other competing models, hence 
we can concluded that the Poisson two parameter Pranav distribution leads to a 
better fit than the other competing models for analyzing the data set given in Table 
2.

S.A Dar et al. 
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Table 5. AIC, BIC and -logl for Fitted Models to a Dataset  
Representing Automobile Insurance Polices

Criterion PD ZIPD GD PLD NBD PTPPD

-logl 5359.5 5375.6 5354.7 5356.25 5358 5348.7

AIC 10725 10755.2 10755.2 10714.5 10718 10701.4

BIC 10746.4 10769.5 10769.5 10721.7 10720.2 10701.8
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Figure 2. Graphical overview of fitted models to dataset given in Table 2

10. 	Conclusion
In this paper, we discussed a new model which has been built using 

compounding technique. Statistical and mathematical properties such as reliability, 
hazard rate and moments have been discussed. Finally, a real data set is discussed 
to demonstrate  the fitness  and applicability of the Poisson two parameter Pranav 
distribution in modeling count dataset.
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In this paper, we proposed two classes of estimators under two new 
calibration schemes for a heterogeneous population by incorporating 
auxiliary information of Non-Conventional Measures of dispersion which 
are robust against the presence of outlier in the data.Theoretical results are 
supported by simulation studies conducted on six bivariate populations 
generated using exponential and normal distributions. The biases and 
percentage relative efficiencies (PRE) of the proposed and other related 
estimators in the study were computed and results indicated that the 
estimators proposed under suggested calibration schemes perform on 
average more efficiently than conventional unbiased estimator, Rao and 
Khan (2016) and Nidhi et al. (2017).

Keywords: 	 heterogeneous population, Outliers, Estimators, Robust 
measures, Population mean

1. 	 Introduction
Traditional method of estimating mean of a study variable y in heterogeneous 

population stratified into K homogeneous non-overlapping subgroups is to use 
conventional estimator defined in Eq. (1) as follow:   

*Corresponding author: supriya.khare@bhu.ac.in
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1

K
st hh h

yτ
=

= Ψ∑                                                  (1) 

where, 1
1

/ , nn
h h h h hii

N N y n y−
=

Ψ = = ∑ , nh is sample size of units drawn with 

SRSWOR from stratum h, Nh is the size of stratum h and yhi is the ith observation 
of stratum h.

Utilizing information on supplementary variables to improve the precision of 
estimators at planning, designing and estimation stage is a well-known approach 
in sampling theory. Estimation, especially in stratified sampling, entails attaching 
weight to sample data followed by calculating the weighted mean. Deville and 
Sarndal (1992) suggested modified weights which improve the precision of 
an estimate using a procedure called calibration. Many authors have proposed 
estimators and studied their properties in this direction including Singh & Mohl 
(1996), Estevao and Sarndal (2000), Audu et al. (2020a), Audu et al. (2020b) 
and Audu et al. (2021). Tracy et al. (2003) obtained calibration weights for 
population mean by using first and second order moment of auxiliary variable 
in stratified random sampling. Kim et al. (2007) utilized calibration approach in 
defining estimators for population variance in stratified random sampling. Barktus 
and Pumputis (2010) proposed calibration estimator in stratified sampling for 
estimating population ratio. Sud et al. (2014) and Estevao & Sarndal (2002) have 
proposed estimators for different population parameters under different sampling 
schemes that satisfy the underlying constraints. The weights in stratified sampling 
are only a function of stratum size which does not gives importance to the stratum 
information. 

Rao and Khan (2016) suggested two new calibration schemes by additively 
transforming both stratum sample and population means of auxiliary variable 
using sample and population coefficient of variation respectively in the constraints 

with respect to usual unbiased estimator 0
1

K

h h
h

yτ
=

= Ψ∑ , where Ψh = Nh / N is the 

stratum weight and hy  is the stratum average of study variable y. The calibration 

weights 1h
∗Ψ  and 2h

∗Ψ are selected so as to minimize the distance function 

( )2

1
/ , 1, 2

K

j hj h h h
h

Z jφ∗

=

= Ψ − Ψ Ψ =∑  subject to calibration constraints 

( ) ( )1
1 1

K K

h h xh h h Xh
h h

x c X C∗

= =

Ψ + = Ψ +∑ ∑   and ( ) ( )2
1 1

1 1
K K

h h xh h h Xh
h h

x c X C∗

= =

Ψ + + = Ψ + +∑ ∑  

respectively, where hx  and hX  are sample mean and population mean of hth 
stratum
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( ) ( )22
2 2 11

1

1, , , , ,
1 1

hh

h

Nn
n hi hhi h ixh Xh i

xh Xh xh h hi Xhi
h h h h h

x Xx xs Sc C s x x S
x X n n N

==
=

−−
= = = = =

− −
∑∑ ∑

The two schemes proposed are as follow;

( ) ( )
1

1
1 1 1

K K K

RK h h h h X h h x
h h h

y X C x cτ
−

= = =

 = Ψ Ψ + Ψ + 
 

∑ ∑ ∑ 	 (2)

( ) ( )
1

2
1 1 1

1 1
K K K

RK h h h h X h h x
h h h

y X C x cτ
−

= = =

 = Ψ Ψ + + Ψ + + 
 

∑ ∑ ∑ 	 (3)

where Ψh is the stratum weight, Cx is the population coefficient of variation of X, 
and cx is the sample coefficient of variation of X.

However, τRK1 and τRK2 are functions of coefficients of variation which can be 
affected by the presence of extreme values or outliers. 

Recently, Nidhi et al. (2017) suggested a new calibration procedure with 

respect to usual unbiased estimator 0
1

K

h h
h

yτ
=

= Ψ∑ , where Ψh = Nh/N is the 

stratum weight, and hy  is the stratum average of study variable y. The calibration 

weights h
∗Ψ  is selected so as to minimize the distance function 

( )2

1
/

K

h h h h
h

Z φ∗

=

= Ψ − Ψ Ψ∑  subject to two calibration constraints 

1 1

K K

h h h h
h h

x X∗

= =

Ψ = Ψ∑ ∑  and 
1

1
K

h
h

∗

=

Ψ =∑ , where hx  and hX  are sample mean and 

population mean of hth stratum. For the cases φh=1 and 1
h hxφ −= , Nidhi et al. 

(2017) obtained new calibrated estimators

 ( )1 11 1
ˆK K

NSSS h h st h hh h
y X xτ β

= =
= Ψ + − Ψ∑ ∑                                     	 (4)   

and 

( )2 21 1
ˆK K

NSSS h h st h hh h
y X xτ β

= =
= Ψ + − Ψ∑ ∑

                          	 (5)
respectively where 

( )
1 1 1

1 2
2

1 1

ˆ
K K K

h h h h h h hh h h
st K K

h h h hh h

x y y x

x x
β = = =

= =

Ψ − Ψ Ψ
=

Ψ − Ψ

∑ ∑ ∑
∑ ∑  

and 
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1 1 1
2

1 1

/ /ˆ
/ 1

K K K
h h h n h h hh h h

st K K
h h h nh h

y x y x

x x
β = = =

= =

Ψ Ψ − Ψ
=

Ψ Ψ −
∑ ∑ ∑

∑ ∑
.

2. 	 New Calibration Estimators
The coefficient of variation is affected by outliers, hence, an alternative to 

the estimators τRK1 and τRK2 would be to replace the coefficient of variation with 
robust measures of dispersion. Measures of dispersion which are robust to outliers 
are useful in cases when the population departs from normality. Motivated by 
Subzar et al. (2018), we proposed new calibration estimators in stratified random 
sampling using information on robust measures such as Gini’s mean difference 
GM (gM), Downton’s method DM (dM) and probability weighted moments PM (pM). 

Let  z +∈ℜ be population with units z
i
, 1,2,…, N, then;

( ) ( ) ( )11
1

2 1 2 1N
M ii

G z N N i N z−−
=

= − − −∑ 	 (6)

( ) ( ) ( )( )11
1

2 1 1 / 2N
M ii

D z N N i N zπ −−
=

= − − +∑ 	 (7)

( ) ( )( )2
1

2 1N
WM ii

P z N i N zπ −
=

= − +∑ 	 (8)

Also, let u be sample with unit u
i
, 1,2,…, n, , then;

( ) ( ) ( )11
1

2 1 2 1n
M ii

g u n n i n u−−
=

= − − −∑
	 (9)

( ) ( ) ( )( )11
1

2 1 1 / 2n
M ii

d u n n i n uπ −−
=

= − − +∑ 	 (10)

( ) ( )( )2
1

2 1n
M ii

p u n i n uπ −
=

= − +∑ 	 (11)

Downton’s Method, Gini’s Mean Method and Probability Weighted Method 
have been studied by several authors (see David 1968, Downton 1966, Greenwood 
et al 1979, Yitzhaki 2003). Some existing literature on the improvement of 
estimators that utilized these robust functions include Abid et al. (2016), Gupta 
and Yadav (2017) and Yadav and Zaman (2021).

2.1. First new calibration scheme 
To obtain the first class of calibration estimator, consider estimator defined in 

Eq. (12) in stratified sampling;

1
, 1, 2,3.

K

ARi hi h
h

y iτ ∗

=

= Θ =∑ 	 (12) 
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where hi
∗Θ  is the new calibration weight that minimizes the Chi-square function 

denoted Z* subject to constraints involving the non-standard measures of 
dispersion, that is,

( )
( ) ( )

2

1

1
1

1

min /

. ( ) ( )

1

K
hi h h hh

K
K

hi h ih h h ihh
h

K
hih

Z

s t x x X V x

φ

ν

∗ ∗
=

∗
=

=

∗
=

= Θ − Ψ Ψ

Θ + = Ψ + 

Θ = 

∑

∑ ∑

∑

	

(13) 

where ϕ
h 

> 0 in (13) are suitably chosen weights which determine the form of 
estimator, 

V1h(x) = GMh(x),V2h(x) = DMh(x), V3h(x) = PMh(x),

v1h(x) = gMh(x),v2h(x) = dMh(x), v3h(x) = pMh(x)

This minimization problem may be solved by the method of Lagrange 
multipliers. 

Consider the following function

( ) ( ) ( )

( )

2

1
1 1 1

2 1

2 ( ) ( )

        2 1

K K K
hi h

g hi h ih h h ih
h h hh h

K
hih

L x x X V xλ ν
φ

λ

∗
∗

= = =

∗
=

Θ − Ψ  = − Θ + − Ψ + Ψ  

− Θ −

∑ ∑ ∑

∑

 	 (14) 

where λj, j =1,2 is Lagrange multiplier. Then, differentiate Lg with respect to 
1 2, , ,hi λ λ∗Θ  and equate to 0, that is, 

*
1 2

0, 0, 0g g g

hi

L L L
λ λ

∂ ∂ ∂
= = =

∂Θ ∂ ∂ 	 (15)

Solving Eq.(15), we get Eq. (16), Eq.(17) and Eq.(18);

( )1 2( )hi h h h h ih h hx xλ φ ν λ φ∗Θ = Ψ + Ψ + + Ψ 	 (16)

( ) ( )1 1
( ) ( ) 0K K

hi h ih h h ihh h
x x X V xν∗

= =
Θ + − Ψ + =∑ ∑ 	 (17) 

1
1 0K

hih
∗

=
Θ − =∑ 	 (18) 
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Substituting the value obtained from Eq. (16) in Eq. (17) and Eq. (18), we get 
Eq. (19) and Eq. (20) as;

( ) ( )

( ) ( )

2
1 21 1

1 1

( ) ( )

( ) ( )

K K
h h h hi h h h hih h

K K
h h hi h h hih h

x x x x

X V x x x

λ φ ν λ φ ν

ν
= =

= =

Ψ + + Ψ +

= Ψ + − Ψ +

∑ ∑
∑ ∑

	 (19)

( )1 21 1
( ) 0K K

h h h hi h hh h
x xλ φ ν λ φ

= =
Ψ + + Ψ =∑ ∑

	 (20)

Solving Eq. (19) and Eq. (20) simultaneously, we get expression for λ1 and λ2 
denoted by 1

optλ and 2
optλ respectively as;

( ) ( )( )
( ) ( )( )

1 1 1
1 22

1 1 1

( ) ( )

( ) ( )

K K K
h h h h hi h h hih h hopt

K K K
h h h h h hi h h h hih h h

X V x x x

x x x x

φ ν
λ

φ φ ν φ ν

= = =

= = =

Ψ Ψ + − Ψ +
=

Ψ Ψ + − Ψ +

∑ ∑ ∑
∑ ∑ ∑ 	

(21)

( ) ( ) ( )( )
( ) ( )( )

1 1 1
2 22

1 1 1

( ) ( ) ( )

( ) ( )

K K K
h h h hi h h hi h h hih h hopt

K K K
h h h h h hi h h h hih h h

x x X V x x x

x x x x

φ ν ν
λ

φ φ ν φ ν

= = =

= = =

Ψ + Ψ + − Ψ +
= −

Ψ Ψ + − Ψ +

∑ ∑ ∑
∑ ∑ ∑

	(22)

Now, substituting Eq.(21) and Eq.(22) in Eq.(16), the new calibrated weights 
hi
∗Θ  are obtained as 

( )1 2( )opt opt
hi h h h h hi h hx xλ φ ν λ φ∗Θ = Ψ + Ψ + + Ψ  	 (23)

and the new class of calibrated estimators is obtained as;

( ) ( )( )1 1 1
( ) ( ) ,K K K

ARi h h st h h hi h h hih h h
y X V x x xτ ρ ν∗

= = =
= Ψ + Ψ + − Ψ +∑ ∑ ∑

	      

      1,2,3i = 	
 (24) 

where 

( ) ( )

( ) ( )( )
1 1 1 1

22

1 1 1

( ) ( )

( ) ( )

K K K K
h h h h h hi h h h h h h h hih h h h

st K K K
h h h h h hi h h h hih h h

x x y y x x

x x x x

φ φ ν φ φ ν
ρ

φ φ ν φ ν

∗ = = = =

= = =

Ψ Ψ + − Ψ Ψ +
=

Ψ Ψ + − Ψ +

∑ ∑ ∑ ∑
∑ ∑ ∑  
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This estimator has estimated mean squared error (MSE) denoted by 
( )ˆ

ARiMSE τ given by;

( ) ( ) ( ) ( )2ˆ v v 2 covARi st st st st st stMSE y x y xτ ρ ρ∗ ∗= + − 	  (25) 

where 

 

( ) ( )
( )

2
1

2
1

1

,

         , cov

1 1         ,  

K
st h h yh sth

K
h h xh st sth

K
h h yxh yh xh hh

h h

v y S v x

S y x

S S
n N

γ

γ

γ ρ γ

=

=

=

= Ψ

= Ψ

= Ψ = −

∑
∑

∑

Further, substituting ( ) 1( )h h ihx xφ ν −= + , and vhi(x) be either gMh(x) or 

dMh(x) or pMh(x) we obtained new estimators as;

( ) ( )( )
( ) ( )( )
( ) ( )( )

1 11 1 1

2 21 1 1

3 31 1 1

( ) ( )

( ) ( )

( ) ( )

K K K
AR h h st h h Mh h h Mhh h h

K K K
AR h h st h h Mh h h Mhh h h

K K K
AR h h st h h Mh h h Mhh h h

y X G x x g x

y X D x x d x

y X P x x p x

τ ρ

τ ρ

τ ρ

∗
= = =

∗
= = =

∗
= = =

= Ψ + Ψ + − Ψ +



= Ψ + Ψ + − Ψ + 

= Ψ + Ψ + − Ψ +


∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
 
(26)

where

 
( ) ( )

( ) ( )

1 1

1 1 1
1

1 1

( ) ( )
,

( ) ( ) 1

K K K
h h hi h h h h hi hh h h

sti K K
h h hi h h hih h

x x y x x y

x x x v x

ν ν
ρ

ν

− −

∗ = = =
−

= =

Ψ + Ψ − Ψ +
=

Ψ + Ψ + −
∑ ∑ ∑

∑ ∑
    

             i = 1,2,3

2.2. 	Second new calibration scheme 
To obtain the second class of the proposed estimators, we let 

1
, 1, 2,3.

K

ASi hi h
h

y iτ ∗

=

= Η =∑
	

(27) 

where hi
∗Η  is the new calibration weight such that the Chi-square function T* is 

defined as
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( )
( ) ( )

2

1

1 1

1

min /

. 1 ( ) 1 ( )

1

K
ih h h hh

K K
ih h ih h h ihh h

K
ihh

T

s t x x X V x

φ

ν

∗ ∗
=

∗
= =

∗
=

= Η − Ψ Ψ

Η + + = Ψ + + 


Η = 


∑
∑ ∑
∑

	 (28) 

Solving for new calibrated weights hi
∗Η using the Lagrange multipliers 

technique, the new calibrated weights hi
∗Η  is

( )1 21 ( )opt opt
hi h h h h hi h hx xµ φ ν µ φ∗Η = Ψ + Ψ + + + Ψ , 	 (29)

where

( ) ( )( )
( ) ( )( )

1 1 1
1 22

1 1 1

1 ( ) 1 ( )

1 ( ) 1 ( )

K K K
h h h h hi h h hih h hopt

K K K
h h h h h hi h h h hih h h

X V x x x

x v x x x

φ ν
µ

φ φ φ ν

= = =

= = =

Ψ Ψ + + − Ψ + +
=

Ψ Ψ + + − Ψ + +

∑ ∑ ∑
∑ ∑ ∑ , 

( ) ( ) ( )( )
( ) ( )( )

1 1 1
2 22

1 1 1

1 ( ) 1 ( ) 1 ( )

1 ( ) 1 ( )

K K K
h h h hi h h hi h h hih h hopt

K K K
h h h h h hi h h h hih h h

x x X V x x x

x v x x x

φ ν ν
µ

φ φ φ ν

= = =

= = =

Ψ + + Ψ + + − Ψ + +
= −

Ψ Ψ + + − Ψ + +

∑ ∑ ∑
∑ ∑ ∑  

and the new class of calibrated estimators is obtained as:

( ) ( )( )1 1 1
1 ( ) 1 ( ) ,K K K

ASi h h st h h hi h h hih h h
y X V x x xτ σ ν∗

= = =
= Ψ + Ψ + + − Ψ + +∑ ∑ ∑

                               i = 1,2,3	 (30) 
where 

( ) ( )

( ) ( )( )
1 1 1 1

22

1 1 1

1 ( ) 1 ( )

1 ( ) 1 ( )

K K K K
h h h h h hi h h h h h h h hih h h h

st K K K
h h h h h hi h h h hih h h

x x y y x x

x v x x x

φ φ ν φ φ ν
σ

φ φ φ ν

∗ = = = =

= = =

Ψ Ψ + + − Ψ Ψ + +
=

Ψ Ψ + + − Ψ + +

∑ ∑ ∑ ∑
∑ ∑ ∑

 

The estimated MSE of τASi = 1,2,3 denoted by ( )ˆ
ASiMSE τ is given as:

( ) ( ) ( ) ( )2ˆ v v 2 covASi st st st st st stMSE y x y xτ σ σ∗ ∗= + −
	 (31) 

Also, substituting ( ) 11 ( )h h ihx xφ ν −= + + , and vhi(x) be either gMh(x) or  

dMh(x) or pMh(x), we obtained new estimators as:
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( ) ( )( )
( ) ( )( )
( ) ( )( )

1 11 1 1

2 21 1 1

3 31 1 1

1 ( ) 1 ( )

1 ( ) 1 ( )

1 ( ) 1 ( )

K K K
AS h h st h h Mh h h Mhh h h

K K K
AS h h st h h Mh h h Mhh h h

K K K
AS h h st h h Mh h h Mhh h h

y X G x x g x

y X D x x d x

y X P x x p x

τ σ

τ σ

τ σ

∗
= = =

∗
= = =

∗
= = =

= Ψ + Ψ + + − Ψ + +



= Ψ + Ψ + + − Ψ + + 

= Ψ + Ψ + + − Ψ + +


∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

(32)

 

where

 

( ) ( )
( ) ( )

1 1

1 1 1
1

1 1

1 ( ) 1 ( )
,

1 ( ) 1 ( ) 1

K K K
h h hi h h h h hi hh h h

sti K K
h h hi h h hih h

x x y x x y

x x x v x

ν ν
σ

ν

− −

∗ = = =
−

= =

Ψ + + Ψ − Ψ + +
=

Ψ + + Ψ + + −
∑ ∑ ∑

∑ ∑

    i = 1,2,3

2.3.	Properties of the new weights hi
∗Θ and , 1, 2,3hi i∗Η =

Theorem 1: The proposed weights hi
∗Θ and , 1, 2,3hi i∗Η = are consistent.

Proof: As nn → Nh, h hx X≈  and vhi (x) ≈ Vhi(x). Then, the expressions 1
optλ  and 

2
optλ in , 1, 2,3hi i∗Θ =  converged to zeros and expressions 1

optµ  and 2
optµ in 

, 1, 2,3hi i∗Η =  tend to zeros. So,

lim 1
h h

hi

n N
h

∗

→

Θ
=

Ψ
	 (33)

lim 1
h h

hi

n N
h

∗

→

Η
=

Ψ
	 (34)

Theorem 2: 
1

lim 1
h h

K

hin N h

∗

→
=

Θ =∑ and 
1

lim 1
h h

K

hin N h

∗

→
=

Η =∑ .

Proof:  Take the summation of hi
∗Θ and , 1, 2,3hi i∗Η = over K, we obtained

( )1 2
1 1 1

1 ( )
K K K

opt opt
hi h h h hi h h

h h h
x xλ φ ν λ φ∗

= = =

Θ = + Ψ + + Ψ∑ ∑ ∑  	 (35)

( )1 2
1 1 1

1 1 ( )
K K K

opt opt
hi h h h hi h h

h h h
x xµ φ ν µ φ∗

= = =

Η = + Ψ + + + Ψ∑ ∑ ∑ , 	 (36)
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Take the limits n
n
 → N

h
 of  Eqs. (35) and (36), 1 2 1 20, 0, 0, 0opt opt opt optλ λ µ µ≈ ≈ ≈ ≈ , 

h hx X≈ , vhi ≈ Vhi, hence the proof.

Theorem 3: 0 1hi
∗< Θ < and 0 1, 1,2,3hi i∗< Η < = .

Proof:  As nn → Nh, 1 2 1 20, 0, 0, 0opt opt opt optλ λ µ µ≈ ≈ ≈ ≈ , then

lim lim /
h h h h

hi hi h hn N n N
N N∗ ∗

→ →
Θ = Η = Ψ = 	 (37)

Since Nh > 0 (population size of stratum h),
1

0
K

h
h

N N
=

= >∑ (Total population 

under study) and N
h
 <, N, then 0 1, h

h h
N
N

ψ ψ < < = 
 

, hence the proof.

3. 	 Simulation Study
We conducted simulation studies to examine the performance of the proposed 

estimators compared to the usual unbiased estimator, Rao and Khan (2016) 
estimators and Nidhi et al. (2017) estimators. We generated two sets of data of size 
1000 units each as the study populations each stratified into three non-overlapping 
heterogeneous groups of sizes 200, 300 and 500, respectively. The assumptions 
about the populations are summarized in Table 1. Samples of sizes 20, 30 and 50 
respectively from the three strata are obtained 10,000 times by SRSWOR method 
from each stratum respectively. The biases and precision (PREs) of the considered 
estimators are computed using Eqs. (38) and (39) respectively.

( ) ( )
10000

1

1ˆ ˆ
10000 j

Bias Yθ θ
=

= −∑ 	     (38)

( ) ( ) ( )( )ˆ var / var 100i lPRE θ θ θ=
	 (39)	

 
where ( ) ( )

10000 2

1

1var
10000 st

j
Yθ τ

=

= −∑ , 

( ) ( )
10000 2

1 2 1 2 1 2 3 1 2 3
1

1ˆ ˆ ˆvar , , , , , , , , , ,
10000l l l RK RK AR AR NSSS NSSS AR AS AS AS

j
Yθ θ θ τ τ τ τ τ τ τ τ τ τ

=

= − =∑ 	
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Table1. Population used for Empirical Study
Population Auxiliary variable x Study variable y 

I

x
h
 ~ exp (λ

h
), λ

1
=0.2,

 λ
2
=0.3, λ

3
=0.1

yhi = 50αxhi 
+ξhi 

,h = 1,2,3
α = 0.5, 1, 1.5, 2.0, 2.5

ξh 
~ N(ϕh, ψh), ϕh 

= 0, ψh = 1,

II

( )

2 , 1, 2,3
0.5,1,1.5,2.0,2.5

, , 0, 1,

hi hi hi hi

h h h h h

y x x h

N

α ξ
α
ξ φ ψ φ ψ

= + + =
=

= =

III

( )

2 3 , 1, 2,3
0.5,1,1.5,2.0,2.5,

0,1 , 1,2,3

hi hi hi hi hi

h

y x x x h

N h

α ξ
α
ξ

= + + + =
=

=

IV

x
h
 ~ N (μ

h
, σ

h
), μ

i = 30,

μ
2 = 50, μ3 = 15, σ1 = 25,

σ
2 = 70, σ3 = 20,

( )

50 , 1,2,3
0.5,1,1.5,2.0,2.5

, , 0, 1,

hi hi hi

h h h h h

y x h

N

α ξ
α
ξ φ ψ φ ψ

= + =
=

= =

V

( )

2 , 1, 2,3
0.5,1,1.5,2.0,2.5

, , 0, 1,

hi hi hi hi

h h h h h

y x x h

N

α ξ
α
ξ φ ψ φ ψ

= + + =
=

= =

VI

( )

2 3 , 1, 2,3
0.5,1,1.5,2.0,2.5,

0,1 , 1,2,3

hi hi hi hi hi

h

y x x x h

N h

α ξ
α
ξ

= + + + =
=

=
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4. 	 Discussion
Tables 2, 3, 4, 5, 6 and 7 showed the results of biases and PREs of the usual 

unbiased, Rao and Khan (2016) and Nidhi et al. (2017) and proposed calibration 
estimators using populations I, II, III, IV, V and VI respectively defined in Table 
1 for different values of α = (0.5, 1.0, 1.5, 2.0, 2.5).  The results of the PREs in 
Table 2 revealed that for all the values of α (coefficients of linear component of 
response variable models) using linear function, the proposed estimators have 
highest values except  the proposed estimator τAR1 performed below Rao and 
Khan (2016) and Nidhi et al. (2017) estimators under normal distribution while 
the results of Table 5 revealed that for all the values of α (coefficients of linear 
component of response variable models) in the linear function, the proposed 
estimators have highest values except the proposed estimators τAR1, τAR2, τAR3 

which performed below Rao and Khan (2016) τRK2 estimator under exponential 
distribution. Also, the results of the PREs in Tables 3, 4, 6, and 7 revealed that for 
all the values of α (coefficients of linear component of study (response) variable 
models) using linear, quadratic and cubic functions in Table 1 for both normal 
and exponential distributions, the proposed estimators have highest values except 
some few cases in which the proposed estimators τAS1 and τAS2 performed below 
Nidhi et al. (2017). These results implied that the proposed estimators on the 
average are more efficient in estimation of population mean than other related 
estimators considered in this study.

5. 	 Conclusion
In this study, we used auxiliary character for a heterogeneous population 

in the form of robust statistical measures based on Gini’s mean difference, 
Downton’s method and probability weighted moments. These measures which 
are not unduly affected by outliers present in the data and provide more efficient 
estimates of population parameters in the presence of extreme values were used 
as alternatives for coefficient of variation used by Rao and Khan (2016). From the 
results of the Tables 2 and 3, it is observed that the estimators proposed under both 
the calibration schemes are not only robust against outliers but more efficient than 
usual ratio estimator in stratified sampling.
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The investigation of economic aspects of gas emissions in terms of its 
volume and consequences is very important, given the current increasing 
trend. Therefore, the prediction of carbon dioxide emissions in Saudi 
Arabia becomes necessary. This study uses annual time series data on 
CO2 emissions in Saudi Arabia from 1970 to 2016. The study built the 
prediction model of CO2 emissions in Saudi Arabia by using Autoregressive 
Integrated Moving Average (ARIMA), Grey System GM and Nonlinear Grey 
Bernoulli Model (NGBM), and comparing their efficiency and accuracy 
based on MAPE metric. The results revealed that Nonlinear Grey Bernoulli 
Model (NGBM) is more accurate than the other prediction models. The 
results may be useful to Saudi Arabian government in the development 
of its future economic policies. As a result, five policy recommendations 
have been proposed, each of which could play a significant role in the 
development of acceptable Saudi Arabian climate policies.

Keywords: 	 annual time series data, Autoregressive Integrated Moving 
Average (ARIMA), CO2 emissions, global warming, Grey Model 
(GM), Nonlinear Grey Bernoulli Model (NGBM), prediction, 
Saudi Arabia

1. 	 Introduction 
In recent years, one of the major topics on international political plans for 

global warming has been climate change. This is because of greenhouse gas 
emissions, mainly CO2 in the atmosphere (Hossain et al. 2017, Bonga & Chirowa 
2014). CO2 is a type of greenhouse gas (GHGs) emitted due to human activities. 
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Human activities are among the primary drivers of carbon dioxide emissions, with 
the most important being the generation of energy from coal, oil, and natural gas, 
and the use of petroleum products for transportation, aircraft, and vehicle trips.                                                                                                            

 Saudi Arabia is one of the wealthy oil and industrial nations disposed to 
carbon dioxide emissions, thus exacerbate global warming. Accordingly, the 
resulting economic losses from CO2 emissions are more than those anticipated 
by the industries.  This is in corroboration with the study of  Ricke et al. (2018), 
who estimated that the size of the economic losses that will appear again in the 
economic results of developing countries, would be greater than their previous 
benefits from the fossil fuel economy. Nevertheless, the three largest countries 
that are much concerned of the climate change are the United States, Saudi Arabia, 
and China, which have been ranked in terms of carbon dioxide emissions.                                                                                                                         

Another study by Jevrejeva et al. (2018) also warned that failure to reduce 
greenhouse gas emissions would inevitably lead to sea-level rise, which would 
have severe economic consequences in the world. For instance, with temperatures 
reaching pre-industrial levels, floods from sea-level rise could cost society $14 
trillion yearly by 2100. Therefore, the prediction of CO2 emissions, which is 
the most significant task in time series analysis become necessary. Predictions 
are extremely essential in many fields such as sciences, economics, agriculture, 
meteorology, medicine, engineering, and others. The prediction of CO2 emissions 
involves predicting the values of the time series from the observed time series. 
The prediction of CO2 emissions have become a global concern, as it has shown 
to assist in raising public knowledge about how to forestall environmental issues 
(Abdullah & Pauzi 2015). Therefore, to make a realistic estimate of Saudi Arabia’s 
future CO2 emissions, a fuller understanding of the most suitable prediction 
models is essential. 

 Many predictive models, such as ARIMA and gray models have been used 
by researchers to predict CO2 emissions. For instance, Nyoni & Bonga, (2019) 
studied forecasting of CO2 emissions in India. In the study, ARIMA(2,2,0) model 
was determined to have the best fit for projecting yearly CO2 in India for the next 
13 years, with an estimate of 3.89 million kt by 2025. Also, Chigora et al. (2019)  
carried out a research on univariate approach using Box-Jenkins to forecast CO2 
emissions for Zimbabwe’s tourism destination vibrancy. The ARIMA(10,1,0) 
model, which focuses on the amount of carbon dioxide (CO2) emission in 
Zimbabwe from 1964 to 2014, was employed to have the most suitable model 
for forecasting yearly CO2 emissions for the next 10 years, with the model 
indicating that it will be around 15,000 kt by 2024. Similarly, Nyoni & Mutongi, 
(2019) predicted carbon dioxide emissions in China from 1960 to 2017, using 
autoregressive integrated moving average (ARIMA) models. With a prediction of 
10,000,000 kt by 2024, the ARIMA (1, 2, 1) model proved to be the most suitable 
model for forecasting yearly total CO2 emissions in China for the next ten years.
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Lotfalipour et al. (2013) using the Grey and ARIMA models, estimated that 
CO2 emissions in Iran will reach 925.68 million tons in 2020, up to 66% from 2010. 
Also, employing a differential model to predict CO2 emissions in Iran, the author 
used the grey system and Autoregressive Integrated Moving Average, and compared 
them with the RMSE, MAE, and MAPE metrics models. Based on the findings, the 
ideal degree of Hannan – Rissanen and Box – Jenkins for ARIMA, the ARIMA(1, 
1, 2) model was developed. Even though MAPE metrics for three models were 
less than 10% accuracy of prediction, the grey system confirmed that the three 
models demonstrated predicting accuracy. Thus, based on the GM (1, 1) estimates, 
CO2 emissions was revealed to reach 925.68 million tons in 2020, representing a 
66 percent increase over 2010. Besides, Ho, (2018) has also investigated the grey 
model.                                                                                                                                                                                                            

Chen, (2008) and Chen et al. (2008) termed the recently created Nonlinear 
Grey Bernoulli Model (NGBM(1, 1)) as precise in handling small time-series 
datasets with nonlinear variations. Also, in the book published by Liu et al. (2004) 
termed NGBM(1, 1) as more flexible than the GM(1,1). This is because of the 
NGBM(1, 1) model’s versatility in determining annual unemployment statistics in 
various nations. This is used to assist governments in developing future labor and 
economic policy. In 2005, NGBM(1, 1) was also employed to predict the foreign 
exchange rates of twelve of Taiwan’s major trading partners. Both experiments 
mentioned above revealed that the NGBM(1, 1) could increase the accuracy of 
the original GM(1,1) simulation and forecasting predictions.

Recently, some researchers attempted to improve the NGBM(1, 1) in various 
ways, such as Zhou et al. (2009) who used a particle swarm optimization approach 
to determine the parameter value of  “n”, and employed the model to predict 
the power load of the Hubei electric power network. The genetic algorithm was 
used in  (Hsu 2009) to optimize the parameters of the NGBM(1, 1), which was 
then employed to predict economic developments in Taiwan’s integrated circuit 
industry. Moreover, studies by Xie et al. (2021) projected fuel combustion-related 
CO2 emissions using a novel continuous fractional nonlinear grey Bernoulli model 
with grey wolf optimizer. The study is critical for framing and implementing 
reasonable plans and policies, owing to diverse national energy structures. 
Therefore, by simultaneously incorporating conformable fractional accumulation 
and derivative into the traditional NGBM(1,1) model, it can capture the nonlinear 
characteristics hidden in sequences. The author thus developed a novel continuous 
fractional NGBM(1,1) model, dubbed CCFNGBM(1,1), to accurately project 
CO2 emissions from fuel combustion in China by 2023. GWO was also used in 
the study to determine the developing coefficients to enhance the predictability of 
the newly provided model. However, by replacing the fractional derivative with 
the integer-order derivative, the model not only improves on the grey forecasting 
model, but it also provides decision-makers with more dependable forecasts.

Z. F. Althobaiti and A. Shabri
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The findings of these studies imply that ARIMA, GM (1, 1), and NGBM(1, 1) 
models has continued to prove to be the most suitable model for predicting yearly 
CO2 emissions and could form the underlying basis for predicting CO2 emissions 
in Saudi Arabia. In this regard, this study intends to evaluate the accuracy of the 
predicting models in order to obtain the most precise data prediction.

2. 	 Research Methodology 
Three predicting models: ARIMA model, grey model and NGBM(1,1) are 

used in this study. The reasons why these three models were chosen is firstly due to 
the ARIMA model, which is a conventional forecasting model that produces more 
reliable and accurate forecasts. Also, it has the benefit of being able to employ 
a combination of auto regression, difference, and moving average of different 
orders to generate the ARIMA(p, d, q) model, which can convey multiple types of 
information of time series. Secondly, GM(1,1) does not necessitate a large sample 
size, and the effect of short-term prediction is good. Thirdly, ARIMA model 
and grey model can be directly compared on the same base. The NGBM(1, 1) 
is a newly created grey model with wide range of applications in diverse fields. 
This is due to its precision in handling small time-series datasets with nonlinear 
variations.

2.1. 	Autoregressive Integrated Moving Average (ARIMA)
 The prediction using ARIMA models statistical method is usually viewed 

as providing more accurate predictions than econometric methodologies 
(Song et al. 2003). Also, in terms of forecasting performance, ARIMA models 
outperformed the multivariate models (Du Preez & Witt 2003). Moreover, 
ARIMA models outperform naive models and smoothing approaches in terms 
of overall performance (Goh & Law 2002). ARIMA models were created in the 
1970s by Box and Jenkins, and its identification, estimation, and diagnostics 
method is based on the notion of parsimony (Asteriou & Hall 2015). That is; 
when the original time series is not stationary, the first order difference process 
ΔY or second order differences Δ2Y, and so on, can be investigated. While, If 
the differenced process is a stationary process, ARIMA model of that differenced 
process can be found in practice if differencing is applied, usually d = 1, or maybe 
d = 2, is enough. The general form of the ARIMA(p, d, q) can be represented by 
a backward shift operator as.

ϕ(B) ΔdYt = θ(B) εt

The general autoregressive moving average process with AR order p and MA 
order q can be written as 
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ϕ(B) = 1 – ϕ1B – ϕ2B2 – … – ϕpBp (the p order AR operator)

θ(B) = 1 – θ1B – θ2B2 – … – θqBq (the p order AR operator)

      Δd = (1 –B)d

These processes can be written briefly as: Yt ~ ARIMA(p, d, q) where ϕ is 
the autoregressive component’s parameter estimate, 𝜃 is the moving average 
component’s parameter estimate, ∆ is the difference operator, d is the difference, 
and B is the backshift operator  (Box et al. 2015).

2.2.	ARIMA model
The ARIMA model is one of the most widely used statistical models for 

time series forecasts (Box et al. 2015). Its forecast principle is to transfer a non-
stationary time series into a stationary time series first. As a result, the dependent 
variable will be described as a model that only yields its lag value, as well as the 
actual and lag values of the random error term. The following are the steps in the 
prediction phase (Wang et al. 2018):

Phase 1: Smooth the time data with a differential tool. In theory, stationarity 
ensures that the fitted curve formed by sampling time series can continue 
inertially along the present form in the future, i.e., the data’s mean and 
variance should not be significantly changed.

Phase 2: Create a model that is autoregressive (AR). The autoregressive model 
is a way of forecasting itself using the variable’s historical result data, and 
it describes the link between current value and previous value. It has the 
following formula:

1

p

t i t i t
i

y yµ φ ε−
=

= + +∑ 	 (1)

	 where yt represents the current value, μ indicates the constant term, p denotes 
the order, ϕi is the autocorrelation coefficient, and εt represents the error.

Phase 3: Create a model based on moving averages (MA). In the autoregressive 
model, the moving average model concentrates on the accumulation of error 
components. Random fluctuations in forecasts can be successfully eliminated. 
It has the following formula: 

1

q

t i t i t
i

y µ θ ε ε−
=

= + +∑
	 (2)

where θi is the MA formula’s correlation coefficient.

Z. F. Althobaiti and A. Shabri



48 The Philippine Statistician Vol. 70, No. 2 (2021)

Phase 4: Create an autoregressive moving average model by combining AR 
and MA(ARMA). The following is the exact formula. The orders of the 
autoregressive and moving average models, respectively, are p and q in this 
formula. The correlation coefficients of the two models, ϕi and θi, respectively, 
must be solved.

1 1

p q

t i t i t i t i
i i

y yµ φ ε θ ε− −
= =

= + + +∑ ∑ 	 (3)

2.3.	The Box – Jenkins Methodology
The subjective evaluation of plots of auto-correlograms and partial auto-

correlograms of the series is used to identify models in the Box-Jenkins process 
(Meyler et al. 1998). The initial step in model selection is to vary the series to 
attain stationarity. The researcher will then assess the correlogram to identify the 
right sequence of the AR and MA components. Because there are no clear–cut 
guidelines for determining whether AR and MA components are appropriate. 
Though, this method of selecting AR and MA components is skewed toward the 
use of personal judgement. As a result, prior experience is essential. The next step 
is to estimate the preliminary model, which is followed by diagnostic testing. 
This is accomplished by creating residuals and analyzing whether they fulfil the 
parameters of a white noise process, which is common in diagnostic testing. If this 
is not the case, the model must be re-specified, and the method must be restarted 
from the second stage. The process may continue indefinitely until a suitable 
model is produced (Nyoni 2018). This procedure is clearly illustrated in Figure 1.

1- Collection of Data and  
Examination

 2- Checking Stationarity  
of Time Series

3- Identification and  
Estimation of Models

5-Predicting and Evaluation

4- Checking for Diagnoses

Figure 1. Procedure for ARIMA Forecasting .
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2.4.	 Grey Model, GM(1,1)
GM(1,1) denotes a grey forecasting model with one variable and one order. 

The following is the general steps for creating a grey forecasting model:

Step 1: Create an initial sequence based on observed data.

x(0) = (x(0)(1), x(0)(2), …, x(0)(n))	 (4)
		

	 where x(0) (i)  denotes the baseline data (state = 0) for the time i 

	 The sample size is n, and the non-negative sequence is x(0). Four data points 
can be used to develop and build the GM (1, 1) model.

Step 2: Using the initial sequence x(0), to generate the first-order Accumulated 
Generating Operation (AGO) sequence x(1)

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 11 , 2 ,......,       ,    n 4x x x x n= ≥ 	 (5)

where x(1) (k) is derived as the following formula:

( ) ( ) ( ) ( )1 0

1

k

i
x k x i

=

= ∑ 	 (6)

Step 3: Calculate the first-order AGO sequence’s mean value:

The average sequences generator’s definition is as follows:

z(1) = (z(1) (1), z(1) (2), …, z(1) (n))

The average value of the sequential data z(1) (k) is define as follows; 

z(1) (k) = 0.5x(1) (k) + 0.5x(1) (k–1)     k = 2, 3,…, n 	 (7)

Step 4: Assume the first-order differential equation for the sequence x(1) is as 
follows:      

( ) ( ) ( ) ( )
1

1   
dx k

a x k b
dk

+ =

 Then its difference equation is shown as:

x(0) (k) + a z(1) (k) = b	 (8)

where a and b are the estimated parameters of the grey forecasting model.
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Step 5: The parameters a and b are calculated using the least-squares method 
(OLS).

[ ] ( ) 1
ˆ     , T T Ta a b B B B Y

−
= =

	 (9)

Y = [x(0)(2), x(0)(3),..., x(0)(n)]T 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 1

1 1

1 1

1 1 2              1
2
1 2 3              1
2

.

.
1 1        1
2

x x

x x

B

x n x n

 − + 
 
 − + 
 =  
 
 
 − − +
 
  

Step 6: Under the initial condition x(1) (1) = x(0) (1), the solution of the grey 
differential equation produces: 

(1) (0)x̂ ( 1) (1) akb bk x e
a a

− + = − +  
	 (10)

Step 7: The first-order inverse accumulated generating operation can be used to 
get the forecast values (0)ˆ ( 1)x k +  (IAGO).

 
(0) (1) (1)ˆ ( 1) ( 1) ( )x k x k x k+ = + − 	 (11)

2.5.	 The Basic NGBM(1,1)
The GM(1,1) method requires obtaining initial data to generate a regular 

creation sequence for constructing the model. Though, the generative model 
predicts the original processing data. The nonlinear Bernoulli grey prediction 
model is based on the GM(1,1) and the differential equation of the modeling to 
enhance prediction accuracy. This model is commonly utilized by Wang et al. 
(2011) and Xu et al. (2015). Also, Xie et al. (2021) proposed the Nonlinear Bernoulli 
Grey Model NBGM(1, 1) to improve prediction accuracy when compared to the 
original GM (1, 1) model. To achieve this, the following sequence was proposed. 

Step 1: Create a starting sequence depending on the data  collected.

x(0) = (x(0) (1), x(0) (2),…, x(0) (n)) 

where x(0) (i)  is the baseline data (state = 0) for time i.
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 That x(0) is a non-negative sequence, and that n is the sample size. Thus, four 
data can create and operate a GM (1, 1) model.

Step 2: From the start sequence x(0), generate the first-order Acumulated 
Generating Operation (AGO) sequence x(1).

x(1) = (x(1) (1), x(1) (2),…, x(1) (n)) ,   n ≥ 4
 
where x(1)(k) is derived as the following formula:

(1) (0)

1
( ) ( )

k

i
x k x i

=

= ∑ ,    k = 1, 2, 3, …, n

Step 3: Calculate the first-order AGO sequence’s mean value.

The following is the definition of the average sequences generator:

z(1) = (z(1) (1), z(1) (2),…, z(1) (n)) 

	 in which z(1)(k) is the background value sequence taken to be the mean 
generation of consecutive neighbors of x(1) where    

z(1) (k) = 0.5 x(1) (k) + 0.5 x(1) (k–1),   k = 2,3,…, n

 The NGBM(1, 1) model is represented as:

x(0)(k) + a z(1)(k) = b (z(1)(k))γ, γ ≠ 1	 (12)

which is the whitening equation of the NGBM(1, 1) model.  

Step 4: Define the sequence x(1) first-order differential equation is:

(1)
(1) (1)( ) ( ) ( )dx k ax k b x

dk
γ+ = 	 (13)

	 The nonlinear parameter γ is given as one, while the linear parameters a and 
b are determined using the least-squares approach.

Step 5: Assuming the power exponent g is already known, the NGBM(1,1) with 
the last two parameters are determined as follows:

[a, b]T = (BTB)-1BTY

	 In which T  is the matrix transpose. As a result:
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( )
( )

( )

(0) (0) (0)

(1) (1)

(1) (1)

(1) (1)

(2), (3),..., ( )

(2) (2)

(3) (3)

( ) ( )

T
Y x x x n

z z

z z

B

z n z n

γ

γ

γ

 =  
 −
 
 − 
 = ⋅ 
⋅ 

 
− 

  

	 (14)

Step 6: The following is the solution to the whitening equation:

( )
1

11(1) (0) (1 )ˆ ( 1) (1) akb bx k x e
a a

γγ γ
−− − −  + = + −    

	 (15)

Step 7: Compute the original sequence’s prediction value:

(0) (1) (1)ˆ ˆ ˆ( ) ( ) ( 1),x k x k x k= − −    k = 2, 3, …, m.	 (16)

The NGBM model is a substantial nonlinear grey prediction model in which 
the power exponent is crucial in grey systems theory. The NGBM model is the 
GM(1,1) model, especially when γ = 0. The NGBM model is the grey Verhulst 
model (GMV)  when γ = 2. Thus, the GM(1,1) and GMV models, in particular, 
can be considered as versions of the NGBM model. On the other side, the 
NGBM model can be thought of as a combination of the GM and GMV models. 
Therefore, the effectiveness of the NGBM model involves specific approaches 
that may be employed to identify the appropriate power exponent value, which 
matches the actual data. As a result, the NGBM model can adequately describe the 
nonlinear properties of real data and improve simulation and prediction accuracy. 
Wang et al. (2009) used the core principle of information overlap in grey systems 
to determine the estimated arithmetic of power exponent in the NGBM model. 
The non-linear programming approach can then be used to calculate the power 
exponent to minimize mean absolute percentage error (MAPE)  (Wang et al. 
2012).  

                                                                                                                                                                       
2.5.1. Parameter Optimization of the Traditional NGBM(1,1)

The traditional NGBM(1,1) help to determine the expected values for the 
optimization problem. However, Pao et al. (2012) proposed a relatively simple 
iterative method for determining the optimal γ.
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(0) (0)

(0)
2

ˆ1 ( ) ( )min 100%
1 ( )

n

k

x k x kMAPE x
n x kγ

=

−
=

− ∑ 	 (17)
 

3. 	 Model Evaluation
The Mean Absolute Percentage Error (MAPE) was used to evaluate the 

accuracy of the model in this study. This is a widely used criterion for determining 
the accuracy of predictions. This is presented below:

1

ˆ
1 100%

n

i i
i

i

x x
MAPE x

n x
=

 
− 

 =
 
 
 

∑ 	 (18)

where MAPE refers to Mean Absolute Percentage Error, ˆix  is the predicted value, 
xi, is the actual value, and the number of data observations n as shown in Table 1.

Table 1.  The MAPE Criteria of Prediction Precision 
MAPE (%) ≤10 10-20 20-50 ≥50

prediction  
precision

Highly accurate Good Reasonable inaccurate

Source: (Lewis, 1982)           

Hence, for a good forecast, the obtained MAPE  should be as small as possible  
(Agrawal & Adhikari, 2013)

4. 	 Results and Discussions
This study is based on 47 yearly CO2 emissions (kt) observations in Saudi 

Arabia from 1970 to 2016. The World Bank’s online database, which is respected 
for its trustworthiness and integrity worldwide, provided all the data employed for 
analysis.  The analysis involves using ARIMA, Nonlinear Grey Bernoulli Model 
(NGBM) and Grey Model (GM) to predict CO2 emissions. Figure 2 shows that 
CO2 emissions (Y) has been increasing from 1970 to 2016, indicating that the 
trend is not stationary. This implies that the mean and variance of the data are 
changing over time.  Accordingly, the data was divided into two parts: training 
and testing (forecasting). The data from 2002-2011 was used for training, while 
the data from 2012 -2016 was used for testing.
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Figure 2. Time series of CO2 emissions in Saudi Arabia 

4.1.	 ARIMA Model 
To examine the stationarity of CO2 emissions, Augmented Dickey- Fuller1 

test (1981) was used. According to Table 2, the results of the (ADF) test of 
the time Series are not stationary in the level at which the calculated statistical 
significance levels are greater than the level of 0.05. The test results indicated that 
the time series has reached the stage of stationary after making its first difference. 
As indicated, the test’s statistical significance is less than the 0.05 level.

Table 2. Augmented Dickey- Fuller test (ADF)
The test statisticCritical value of ADFResult

CO20.6552-1.7963Non- stationary

d CO20.01814 -3.9973stationary

                 
ARIMA(1, 1, 0) with lower AIC is preferable than the one  with a  higher AIC 

values  (Nyoni 2018). As a result, the ARIMA (1, 1, 0) model is selected as the 
best as shown in Table 3.

Table 3. Comparison of the Variants of the ARIMA Models
AICBox-Jenkins Model ARIMA(p,d,q)

1097.67ARIMA(2,1,2)

1094.491ARIMA(0,1,0)

1093.599ARIMA(1,1,0)

1094.78ARIMA(0,1,1)

1095.573ARIMA(2,1,0)

1095.563ARIMA(1,1,1)

1098.859ARIMA(2,1,1)
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In Table 4, the AR (1) component coefficients are negative and statistically 
significant at the 5%.  This implies that historical CO2 levels are relevant in 
describing current and future CO2 levels in Saudi Arabia. Figure 3 shows that 
CO2 emissions in Saudi Arabia are increasing throughout a 13-year period, from 
2017 to 2030. Saudi Arabia’s CO2 emissions will reach 747241.6 kt by 2030. As 
a result, Saudi Arabia will continue to face issues related to global warming and 
climate change.

Table 4. Results of z Test Coefficients for ARIMA (1,1,0)
p-value ZStandard Errorcoefficientvariable

0.083422-1.73120.1547-0.2678AR(1)

0.002407 **3.03483851.708711689.3375Intercept(mean)

The *, ** and *** means significant at 10%, 5% and 1% respectively.

4.2. 	GM(1,1) and NGBM(1,1) models 
 The GM(1,1) and NGBM(1,1) models were employed  to predict CO2 

emissions in Saudi Arabia. Equation (1) to Equation (6) are used to determine the 
parameters, develop coefficient a, and grey variable b for ordinary least squares 
calculation, and the output is actual GM (1, 1) only variable a and b, which 
must be simulated with γ = 0. The other is determined using the three unknown 
NGBM(1, 1) variables a, b, and γ, as given in Table 4. The GRG Nonlinear 
method of optimization, first devised by Leon Lasdon and Alan Waren, is used 
to determine the value of the index (Power Exponent γ)  (Lasdon et al. 1978). Its 
implementation as a Fortran software for addressing small to medium-sized issues 
and some computational findings solved the Nonlinear Optimization Problem.  As 
a result, the value of MAPE was calculated using the NGBM(1,1) at each data 
point to be predicted by setting the minimum value of MAPE (Pao et al. 2012), 
and by varying the value of index between -10 and 10 for each data point to be 
forecasted  (Mustaffa & Shabri 2020). 

5. Comparative Study

Table 5. Predicted value and MAPE                           

Year Actual 
value

GM(1,1), γ = 0 
a = -0.0580, b = 229.464

NGBM(1,1) , γ = 0.2 
a = -0.0783, b = 315.420  ARIMA (1,1.0)

Predicted 
VALUE PE(%) Predicted 

VALUE PE(%) Predicted 
VALUE PE(%)

2002 326.407 314.32 3.70% 299.21 8.33% 305.34 6.45%

2003 327.272 333.11 1.78% 316.38 3.33% 313.46 4.22%

2004 395.834 353.02 10.81% 336.01 15.11% 321.59 18.76%

2005 397.642 374.13 5.91% 358.00 9.97% 329.72 17.08%
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2006 432.739 396.49 8.38% 382.35 11.64% 337.84 21.93%

2007 387.777 420.196 8.36% 409.126 5.51% 345.97 10.78%

2008 430.175 445.314 3.52% 438.439 1.92% 354.09 17.69%

2009 468.965 471.934 0.63% 470.433 0.31% 362.22 22.76%

2010 518.491 500.146 3.54% 505.275 2.55% 370.35 28.57%

2011 499.878 530.043 6.03% 543.162 8.66% 378.47 24.29%

MAPE(2000-2011)                  4.42%                     3.79% 20.82%

2012 564.842 534.679 5.34% 502.516 11.03% 368.6 34.74%

2013 541.047 555.664 2.70% 525.569 2.86% 394.73 27.04%

2014 601.046 577.473 3.92% 552.736 8.04% 402.85 32.98%

2015 647.111 600.137 7.26% 583.585 9.82% 410.98 36.49%

2016 563.449 623.691 10.69% 617.945 9.67%

MAPE (2012-2016)                                            5.98% 8.28% 31.37%

   Source: Researcher’s fieldwork

 Table 5 demonstrated that the MAPE value for the NGBM(1,1) in modeling 
is 3.79%. In comparison, the MAPE value for simulation and forecast data is 
8.63%, as shown in Table 5. This implies that the smaller data size influences 
the MAPE value for simulation data, and its value increases. It is known that the 
lower the MAPE value, the more accurate the model, and therefore the precise 
model is at N = 10 for NGBM(1,1).

According to the results, the GM(1,1) has a MAPE of 4.42 %, ARIMA has a 
MAPE of 20.82%, while NGBM(1,1) has a MAPE of 3.79 %. Compared to the 
GM(1,1) model and ARIMA model, the NGBM(1,1) model can improve prediction 
performance. As a result, the prediction value of NGBM(1,1) differs significantly 
from that of GM(1,1) and ARIMA. This study, therefore, demonstrated that the 
Mean Absolute Percentage Error (MAPE) is around 3.79% in NGBM(1,1), which 
implies that the model is about 96.21% the highly accurate in prediction based 
on the MAPE criteria of prediction precision. While,  GM(1,1)  is around 4.42% 
approximately 95.58% highly accurate. But ARIMA(1,1,0) model is around 
20.82%, about 79.18% reasonably accurate  as  presented in  the  MAPE criteria in 
Table 1. Consequently, Figure 3 shows the comparison of predictive data of these 
three models. The NGBM(1,1) model has outperformed than ARIMA(1,1,0) and 
GM(1,1) model.  This is as a result that NGBM(1,1) model has the lower value 
of MAPE (3.79% ) compared with GM(1,1) model (4.42 %) and ARIMA(1,1,0) 
model ( 20.82% ) . Therefore, NGBM(1,1) delivers the best result among those 
considered and was used to predict CO2 emissions in Saudi Arabia.  It was also 
observed that CO2 emission in Saudi Arabia is continuously increasing as shown 
in Figure 3. This implies that CO2 emissions in Saudi Arabia will continue to rise 
over the next decade from 2017 to 2026, as presented in Figure 4, and the country 
will face the challenges of global warming, climate change, as well as clean and 
healthy environment.
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Figure 3. Comparison of predictive data, ARIMA(1,1,0),GAGM(1,1)  

and GM(1,1) in Saudi Arabia from 2002 to 2011
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Figure 4. Comparison of predictive data, ARIMA(1,1,0),GAGM(1,1)  
and GM(1,1) in Saudi Arabia over the next decade from 2017 to 2026

6. 	 Conclusion
This study concluded that NGBM(1,1) modelling is suitable in predicting 

the future output of the system as it has a high level of accuracy. The prediction 
accuracy of the NGBM(1,1) model is estimated by Mean Absolute Percentage 
Error (MAPE). Generally, below 10% MAPE confirms that the NGBM(1,1) 
provides good prediction accuracy. Therefore, this study shows that NGBM(1,1) 
is more accurate than ARIMA(1,1,0) and GM(1,1) by evaluating MAPE. The 
findings of this study are critical for the Saudi government, particularly in terms 
of medium and long-term economic planning.
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To build on these findings and forecast the performance of other sectors, more 
investigation is recommended. Because this analysis exclusively forecasted CO2 
emissions in Saudi Arabia, this was proposed. CO2 emissions are influenced by 
several causes, including the combustion of fossil fuels and the loss of vegetative 
cover. As a result, humans and ecosystems are affected, and future study will be 
able to use multi-factor Grey prediction models to develop more precise CO2 
emission projections.

Recommendations
  Based on the findings, the following recommendations were made for Saudi 

Arabia to reach its goal of lowering carbon emissions: 
1.	 Development of renewable energy sources. Although, Saudi Arabia has 

strong capabilities in solar and winds energy. It does not currently have a 
competitive sector in the area of renewable energy, so it must be developed.

2.	 The transition from coal to natural gas.

3.	 Reliance on nuclear technology to produce energy, which is used in nuclear 
power plants.

4.	 There is also a need to keep educating the Saudi people about the need of 
decreasing pollution levels.

5.	 The Saudi government should limit pollution by enacting policies such as 
raising taxes on polluting companies, particularly those that produce fossil 
fuels, in their everyday operations.
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This paper proposes two new tests for tail independence in extreme 
value models. We use the conditional distribution function (df) of X + Y, 
given that X + Y  > c based approach of Falk and Michel to test for tail 
independence in extreme value models. We recommend using Cramer-
von Mises and Anderson-Darling tests for tail independence. Simulations 
show that the two tests are better than the Kolmogorov-Smirnov test 
which has good results among the proposed tests by Falk and Michel. 
Finally, by using two real datasets, we illustrate the application of the two 
proposed tests as well as the traditional tests of Falk and Michel.

Keywords: 	 extreme value model, tail independence, Copula function, 
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Pearson test, Kolmogorov-Smirnov test, Fisher’s κ test,  
Chi-square goodness-of-fit test

1. 	 Introduction
Tail dependence describes the amount of dependence in the tail of a bivariate 

distribution. In other words, tail dependence refers to the degree of dependence 
in the corner of the lower-left quadrant or upper-right quadrant of a bivariate 
distribution. Definitions of tail dependence for multivariate random vectors are 
mostly related to their bivariate marginal df’s. Geffroy (1958, 1959) and Sibuya 
(1960) independently introduced the quantity 

( )1 1

1
: lim ( ) | ( ) ,u X Y

t
P X F t Y F tλ

−

− −

→
= > >
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where 1
XF −  and 1

YF −   are quasi-inverses of FX and FY respectively. This quantity 
is called the upper tail dependence coefficient provided the limit exists, which is 
displayed for simplicity as TDC. We say that (X, Y) has upper tail dependence if 
λu > 0 and upper tail independent or asymptotically independent if λu = 0. Loosely 
speaking, tail dependence describes the limiting proportion that one margin 
exceeds a certain threshold given that the other margin has already exceeded that 
threshold. Several empirical surveys such as An’e and Kharoubi (2003) and 
Malevergne and Sornette (2004) exhibited that the concept of tail dependence is a 
useful tool to describe the dependence between extremal data. The TDC can also 
be defined via the notion of copula. The copula function C(u,v)

 
is a bivariate df 

with  uniform  marginals  on [0,1], such that F(x,y) = C(FX(x), FY(y). By Sklar’s 
Theorem (Sklar, 1959), this copula exists and is unique if FX  and FY  are continuous. 
Also, the copula C is given by 1 1( , ) ( ( ), ( )), , [0,1]X YC u v F F u F v u v− −= ∀ ∈  (for 
more details, see Nelsen, 2006). If C(u,v) is the copula of (X, Y), then

1

1 2 ( , )lim .
1u t

u C u u
u

λ
−→

− +
=

−

See Coles et al. (1999). Frahm et al. (2005) introduced estimators for 
TDC under various assumptions: using a specific distribution, within a class of 
distributions, using a specific copula function, and within a class of copulas or a 
nonparametric estimation (without any parametric assumption). 

In this paper we restrict our attention to extreme value copulas, i.e., a copula 
C such that 

2( )( , ) exp ( ) , , [0,1] , (1)
( )

log vC u v log uv A u v
log uv

  
= ∈  

  
	 (1)

where, A:[0,1] → [1/2,1] is the Pickands dependence function (Pickands 1981). 
This function is absolutely continuous and convex, satisfies A(0) = A(1) = 1, and 
its derivative has values between –1 and 1. When A(t) = 1, Equation (1) yields 
independence and when in Equation (1) we choose A(t) = max{t, 1–t}, then 
complete dependence obtain. These copulas are useful to model componentwise 
maxima.

Let (X,Y) be a random vector (rv) with values in (-∞,0)2, whose df H(x, y) 
coincides, for x, y ≤ 0 close to 0, with a max-stable or extreme value df (EV) G 
with reverse exponential margins, i.e.,

G (x, 0) = G (0, x) = exp(x),   x ≤ 0, 	 (2)
and
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, ( , ), , 0, .n x yG G x y x y n
n n

  = ≤ ∈ 
 



Suppose that (X1,Y1),…, (Xn,Yn) are independent copies of (X,Y). If diagnostic 
checks of (X1,Y1),…, (Xn,Yn) suggest X,Y to be independent in their upper tail, then 
modeling with dependencies leads to the over estimation of probabilities of extreme 
joint events. Some inference problems caused by model mis-specification are, for 
example, discussed in Dupuis and Tawn (2001). Testing for tail independence is, 
therefore, mandatory in a data analysis of extreme values.

Falk and Michel (2006) showed that the conditional df of X + Y, given that  
X + Y > c, has a limiting df F(t) = t2, t ∈[0,1], as c ↑ 0 if and only if X, Y are 
tail independent. Otherwise, the limiting df is uniform distribution on‌ [0,1], i.e.,  
F(t) = t, t ∈[0,1]. This result will be utilized to define tests for the tail independence 
of X, Y which are suggested by the Neyman-Pearson lemma as well as via the 
goodness-of-fit tests that are based on Fisher’s κ, on the Kolmogorov-Smirnov 
test as well as on the chi-square goodness-of-fit test, applied to the exceedances 
Xi + Yi > c in the sample (X1,Y1),…, (Xn,Yn). Using this approach we recommend 
Cramer-von Mises and Anderson-Darling tests for tail independence. 

The organization of the paper is as follows. The next section briefly presents 
the approach of Falk and Michel (2006) and then expresses their tests for tail 
independence in extreme value models. Also, we introduce the two proposed 
tests based on the Cramer-von Mises and Anderson-Darling statistics. Section 
3 compares the size and power of the proposed tests as well as the traditional 
tests for tail independence using Monte Carlo experiments. In Section 4, all tests 
mentioned in Section 2, are implemented on two real datasets. Finally, conclusions 
are given in the last section. In this paper, for computation and simulation, we use 
the R statistical software.

2. 	 Tail Independence Tests
In the following, we assume that the rv (X, Y) has a df H(x,y), which coincides, 

for x, y ≤ 0 close to 0, with a max-stable or extreme value df (EV) G with reverse 
exponential margins (Equation (2)). The following theorem from Falk and Michel 
(2006) is the basis of the tail independence tests in this paper.

Theorem 1. We have uniformly for t ∈ [0,1] as c ↑ 0 as 

2 (1 ( )), Tail Independence,
( | )

(1 ( )), .
t O c

P X Y ct X Y c
t O c elsewhere

 +
+ > + > = 

+
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Based on this theorem, Falk and Michel (2006) introduced four tests for tail 
independence in extreme value models, which can be grouped into two different 
classes: one based on Neyman-Pearson lemma and the other tests based on 
Fisher’s κ , Kolmogorov-Smirnov and chi-square goodness-of-fit tests. These 
tests are presented below.

 2.1.	 Proposed tests by Falk and Michel
Suppose that (X1,Y1),…, (Xn,Yn) are independent copies of (X,Y). Fix c < 0 and 

consider only those observations Xi,Yi among the sample that satisfy Xi + Yi > c. 
Denote these by C1, C2,…, CK(n) in the order of their outcome. If c is large enough, 
then Ci / c, i = 1, 2,… are iid with a common df Fc and are independent of K(n), 
which is binomial B(n, q) distributed with q = 1–(1– c)exp(c).

Neyman-Pearson Test.  The first test Falk and Michel (2006) introduced is 
based on Neyman-Pearson lemma. We have to decide, roughly, whether the df 
of Vi  := Ci / c, i = 1, 2,… is equal to either the null hypothesis F(0)(t) = t2 or the 
alternative F(1)(t) = t, 0 ≤ t ≤ 1. Assuming that these approximations of the df of  
Vi :=Ci / c are exact and that K(n) = m > 0, the optimal test for testing F(0) against 
F(1) is based on the loglikelihood ratio

11

1: ( ) (2),
2

m m

NP i
ii i

T log log V m log
V ==

 
= = − − 

 
∑∏

if m is large enough, the p-value of this test obtained by using the central limit 
theorem, that is equal to

1
1/2

2 ( )
,

m

i
i

NP

log V m
p

m
=

 + 
 = Φ
 
 
 

∑

where Φ denotes the df of the standard normal distribution.
The other three tests of Falk and Michel (2006) are goodness-of-fit tests 

based on Ci / c. 
Fisher’s κ Test.  Conditioning on K(n) = m > 0, we consider the rvs

1 (1 )exp( ): ( / ) , 1, , ,
1 (1 )exp( )

i i
i c i

C CU F C c i m
c c

− −
= = = …

− −

if X and Y are tail independent and c is close to 0, according to Theorem 1, rvs  
Ui (i=1,…,m) are iid from uniform distribution on (0,1). Consider the 
corresponding order statistics U1:m ≤ …≤ Um:m and define

Sj := Uj:m – Uj-1:m,    j = 2,…,m,
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and let S1 = U1:m, Sm+1 = 1 – Um:m. Suppose that

Mm := max1≤j≤m+1Sj,

then, the Fisher’s κ test statistic is

κm := (m+1) Mm.

A table of the critical values of Fisher’s κ test is given in Fuller (1976). The 
p-value of this test is equal to

1 1: 1 1 ( ),
1

m
m m mp G G M

mκ
κ

+ +
 = − = − + 

where
1

1
0

1
( ) ( 1) (max(0,1 )) , 0.

m
j m

m
j

m
G x jx x

j

+

+
=

+ 
= − − > 

 
∑

Kolmogorov-Smirnov Test.  Conditioning on K(n) = m > 0, we can apply the 

Kolmogorov-Smirnov test to rvs Ui (i =1,…,m). Denote [0, ]
1

1ˆ ( ) : ( )
m

m t i
i

F t I U
m =

= ∑  

be the empirical df of rvs Ui (i =1,…,m), then the Kolmogorov-Smirnov statistic 
is

1/2

[0,1]

ˆ: sup | ( ) | .KS m
t

T m F t t
∈

= −

The approximate p-value of Kolmogorov-Smirnov test is equal to

pKS := 1–K(TKS),

where K is the df of the Kolmogorov distribution.
Chi-square Test. Conditioning on K(n) = m > 0, we can apply the chi-square 

goodness-of-fit test to rvs Ui (i =1,…,m). For this purpose, we divide the interval 
[0,1] into k consecutive and disjoint intervals I1, …, Ik and consider the chi-square 
statistic

2
2

,
1

( ): ,
k

i i
m k

i i

m mp
mp

χ
=

−
= ∑

where mi is the number of observations among U1,…,Um that fall into the interval 
Ii and pi is the length of Ii,1 ≤ I ≤ k. If m is large, such that for all i = 1,…, k we 

have mpi > 5, then the statistic 
2

,m kχ  have chi-square distribution with k–1 degrees 
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of freedom. Therefore, the approximate p-value of this test is equal to

2
2 2

1 ,: 1 ( ).k m kp
χ

χ χ−= −

2.2. The proposed tests
Based on Theorem 1 from Falk and Michel (2006) we propose two new tests 

for tail independence in extreme value models. These tests are based on Cramer-
von Mises and Anderson-Darling statistics.

Cramer-von Mises Test. Conditioning on K (n) = m > 0, we can apply the 
Cramer-von Mises test to rvs Ui (i =1,…, m). Consider the corresponding order 
statistics U1:m ≤ …≤ Um:m, then the Cramer-von Mises statistic is

2

:
1

1 2 1: .
12 2

m

CM i m
i

iT U
m m=

− = + −  
∑

Csorgo and Faraway (1996) obtained the exact and asymptotic dfs of Cramer-
von Mises statistic, where we can use them to calculate p-value of this test. 
Therefore, approximate p-value of Cramer-von Mises test is equal to

pCM := 1 – K(TCM), 

where K is the df proposed by Csorgo and Faraway (1996).
Anderson-Darling Test. Conditioning on K (n) = m > 0, we can apply the 

Anderson-Darling test to rvs Ui (i =1,…, m). Consider the corresponding order 
statistics U1:m ≤ …≤ Um:m, then the Anderson-Darling statistic is

: 1:
1

1: (2 1)[log( ) log(1 )].
m

AD i m m i m
i

T m i U U
m − +

=

= − − − + −∑

Anderson and Darling (1954) found the limiting df of this statistic. The mean 
of this limiting df is 1 and the variance is 2(π2–9)/3~0.57974. Using the limiting 
df, we can obtain approximate p-value of Anderson-Darling test as below

pAD := 1–A(TAD),

where A is the limiting df proposed by Anderson and Darling (1954).

3. 	 Monte Carlo Experiments
In this section, we carried out to evaluate the performance of all above tests 

for the tail independence by using Monte Carlo experiments. The joint behavior of 
rv (X,Y) is assumed to be adequately represented by three one-parameter families 
of extreme value copulas with dependence parameter θ, namely Gumbel copula, 
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Galambos copula and Husler-Reiss copula. Also, we considered Frank copula 
does not belong to extreme value copulas. The Gumbel copula is defined as

1

( , ) ( ln ) ( ln ) , [1, ),C u v exp u vθ θ θ
θ θ

 
 = − − + − ∈ ∞  

 

Galambos copula is expressed as
1

( , ) ( ln ) ( ln ) , [0, ),C u v uv exp u vθ θ θ
θ θ

−− − 
 = − − + − ∈ ∞  

 

for θ∈[0, ∞) Husler-Reiss copula is

1 ln 1 ln( , ) ln ln ln ln ,
2 ln 2 ln

u vC u v exp u v
v uθ

θ θ
θ θ

       = Φ + + Φ +              

and Frank copula is specified by

1 ( 1)( 1)( , ) 1 , ( , ) \{0}.
( 1)

u ve eC u v log
e

θ θ

θ θ θ
θ

− −

−

 − −
= − + ∈ −∞ ∞ − 

For more details about these copulas see Joe (2014).

The Monte Carlo experiments are conducted for the threshold  c = –0.5, –0.1, 
–0.05, and based on K(n) = m = 25 exceedances under the hypothesis H0 of the 
independence of X and Y. 

The chi-square statistic uses k = 4 intervals of equal length. 10000 
replications are performed and we compute the percentage of rejection of H0. Two 
characteristics of the tests were of interest: their ability to maintain their nominal 
level, arbitrarily fixed at 5% throughout the study, and their power under a variety 
of alternatives. It should be noted that, conditioning on K (n) = m = 25, when the 
threshold c increases to zero, the required sample size increases too.

Tables 1-3 give the percentage of rejection of the hypothesis of the 
independent tails of X and Y in sampling from different extreme value copulas. 
In Gumbel, Galambos and Husler-Reiss copulas, the TDC are equal to 2 – 21/θ, 
2-1/θ and 2[1–Φ(1/θ] respectively. Therefore, in each table, the first row of each 
test shows the empirical size of the test under the null hypothesis of the tail 
independence of rv (X,Y) and other rows present the power of these tests under 
the tail dependence. 
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Table 1. Percentage of rejection of H0 by various tests with the underlying Gumbel 
copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

1 0.1550 0.0797 0.0672

2 0.9704 0.9641 0.9703

5 0.9852 0.9726 0.9698

10 0.9843 0.9740 0.9701

Fisher’s κ

1 0.0500 0.0531 0.0494

2 0.1991 0.2388 0.2450

5 0.2290 0.2405 0.2501

10 0.2299 0.2486 0.2494

Kolmogorov-
Smirnov

1 0.0467 0.0515 0.0521

2 0.6236 0.7267 0.7513

5 0.7140 0.7485 0.7586

10 0.7222 0.7542 0.7604

Chi-square

1 0.0365 0.0423 0.0407

2 0.4720 0.5841 0.6066

5 0.5682 0.6050 0.6161

10 0.5750 0.6077 0.6060

Cramer-von Mises

1 0.0477 0.0492 0.0536

2 0.6841 0.7839 0.8050

5 0.7702 0.8050 0.8112

10 0.7742 0.8042 0.8072

Anderson-Darling

1 0.0468 0.0490 0.0537

2 0.7960 0.8694 0.8879

5 0.8622 0.8858 0.8893

10 0.8647 0.8898 0.8913

As seen in tables regardless of the threshold value, except for the Neyman-
Pearson test, the size of all tests is close to nominal level 5%, this is shown Bold 
in Tables 1-3. Of course, by choosing the small threshold close to 0 we ensure that 
the size of the Neyman-Pearson test also controls. This is inspected in Lemma 3.1 
of Falk and Michel (2006). 
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Table 2. Percentage of rejection of H0 by various tests with the underlying Galambos 
copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ 

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

0 0.1688 0.0906 0.0917

2 0.9805 0.9674 0.9713

5 0.9856 0.9713 0.9708

10 0.9853 0.9729 0.9721

Fisher’s κ 

0 0.0485 0.0528 0.0523

2 0.2104 0.2351 0.2424

5 0.2304 0.2415 0.2460

10 0.2335 0.2386 0.2415

Kolmogorov-
Smirnov

0 0.0510 0.0500 0.0498

2 0.6742 0.7392 0.7571

5 0.7132 0.7453 0.7535

10 0.7165 0.7509 0.7557

Chi-square

0 0.0434 0.0400 0.0368

2 0.5266 0.5938 0.6083

5 0.5758 0.6064 0.6130

10 0.5671 0.6100 0.6119

Cramer-von Mises

0 0.0536 0.0502 0.0523

2 0.7282 0.7918 0.8058

5 0.7698 0.8013 0.8068

10 0.7698 0.8106 0.8063

Anderson-Darling

0 0.0550 0.0527 0.0545

2 0.8306 0.8771 0.8896

5 0.8616 0.8878 0.8886

10 0.8622 0.8873 0.8872

Comparison of the power of the tests shows that the Neyman-Pearson test 
having the largest power followed by the Anderson-Darling, Cramer-von Mises, 
Kolmogorov-Smirnov and chi-square tests, respectively. 
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Table 3. Percentage of rejection of H0 by various tests with the underlying Husler-
Reiss copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

0 0.1652 0.0737 0.0633

2 0.9774 0.9716 0.9705

5 0.9847 0.9700 0.9701

10 0.9870 0.9723 0.9684

Fisher’s κ  

0 0.0487 0.0507 0.0497

2 0.1974 0.2348 0.2509

5 0.2251 0.2485 0.2496

10 0.2288 0.2438 0.2421

Kolmogorov-
Smirnov

0 0.0484 0.0497 0.0522

2 0.6602 0.7382 0.7509

5 0.7118 0.7464 0.7556

10 0.7245 0.7398 0.7577

Chi-square

0 0.0373 0.0389 0.0391

2 0.5111 0.5895 0.6047

5 0.5603 0.6049 0.6119

10 0.5810 0.5994 0.6121

Cramer-von Mises

0 0.0526 0.0485 0.0532

2 0.7186 0.7886 0.8013

5 0.7641 0.8000 0.8067

10 0.7801 0.7984 0.8155

Anderson-Darling

0 0.0512 0.0496 0.0524

2 0.8234 0.8774 0.8846

5 0.8599 0.8832 0.8850

10 0.8684 0.8811 0.8885

As Falk and Michel (2006) pointed out the distribution of pκ is almost not 
affected, therefore the test for the independence of X and Y based on Fisher’s κ 
fails. These results are viewable in Tables 1-3.
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Table 4. Percentage of rejection of H0 by various tests with the underlying Frank 
copula with degrees of dependence θ and 25 exceedances over the threshold c

Test Dependence 
Parameter θ 

Threshold

-0.5 -0.1 -0.05

Neyman-Pearson

0 0.1589 0.0739 0.0621

2 0.3928 0.1094 0.0804

5 0.6683 0.1626 0.1053

10 0.8722 0.2726 0.1564

Fisher’s κ 

0 0.0502 0.0479 0.0471

2 0.0655 0.0547 0.0512

5 0.1021 0.0548 0.0552

10 0.1550 0.0703 0.0525

Kolmogorov-
Smirnov

0 0.0502 0.0494 0.0447

2 0.0997 0.0572 0.0491

5 0.2434 0.0737 0.0557

10 0.4726 0.1161 0.0729

Chi-square

0 0.0403 0.0424 0.0374

2 0.0664 0.0437 0.0372

5 0.1592 0.0519 0.0433

10 0.3329 0.0760 0.0518

Cramer-von Mises

0 0.0521 0.0491 0.0439

2 0.1086 0.0577 0.0507

5 0.2829 0.0763 0.0584

10 0.5252 0.1322 0.0786

Anderson-Darling

0 0.0505 0.0507 0.0458

2 0.1161 0.0604 0.0499

5 0.3050 0.0783 0.0577

10 0.5660 0.1389 0.0806

Table 4 illustrates the percentage of rejection of the hypothesis of the 
independent tails of X and Y in sampling from Frank copula. In Frank copula, for 
all values of the dependence parameter θ, TDC is equal to zero; i.e. X and Y are 
tail independent. Therefore, this table shows the empirical size of the test under 
the null hypothesis of the tail independence of rv (X,Y). As seen in Table 4, when 
the dependence parameter θ  is zero (i.e. data does not have any dependency), 
except for the Neyman-Pearson test, the size of all tests is close to nominal level 
5% and by choosing the small threshold the size of the Neyman-Pearson test also 
controls. By increasing the dependence parameter, although X and Y do not have 
tail dependence, the empirical size of the tests are violated. Looking at Table 
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4, we observe that in this case if the threshold value is close to 0, the empirical 
level approaches the nominal level, this is shown Bold in Table 4. The results of 
Table 4 show that, even if rv (X,Y) does not belong to extreme value model, tail 
independence tests for a small threshold still have good performance.

4. 	 Data Analysis
In this section, the application of tail independence tests is illustrated using 

two different datasets. The first one is due to Cornwell and Trumbull (1994), who 
prepared based on the transcript of crime in North Carolina regarding 24 variables. 
The dataset included a panel of 90 observational units (counties) from 1981 to 
1987, i.e. total number of observations is 630. We consider the two variables 
density (people per square mile) and crmrte (crimes committed per person) and 
other variables are ignored. We consider this dataset as Crime data. The second 
dataset, reported from "Investing.com." This site is a global financial portal 
and internet brand composed of 28 editions in 21 languages and mobile apps 
for Android and iOS that provide news, analysis, streaming quotes and charts, 
technical data and financial tools about the global financial markets. We consider 
stock price pairs from two Japanese multinational automaker: Honda Motor and 
Mazda Motor. Our sample period covers a total 758 observations from 10 Sep. 
2014 to 16 Oct. 2017. We call this dataset as Stock data. In Figure 1, we draw 
scatter plots of empirical df of pairs for two datasets. 
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Figure 1. Scatter Plots of Empirical df of Pairs

We use a specific copula method for estimating TDC. For this purpose, we 
fitted three famous Archimedean copulas to the two datasets and obtained Cramer-
von Mises statistic ( )B

nS  introduced by Genest et al. (2009), where is based on 
Rosenblatt’s transform. It should be noted that the margins are estimated by 
empirical dfs. The results are shown in Table 5. 
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Table 5. Copula goodness-of-fit test for two datasets

Copula 
under H

0

Crime Data Stock Data

p.value AIC θ̂ TDC p.value AIC θ̂ TDC

Clayton 0 -313.88 1.909 ----- 0 -556.56 2.620 -----

Frank 0.097 -368.61 5.528 ----- 0.093 -644.07 7.112 0

Gumbel 0.24 -375.09 1.954 0.574 0.032 -580.55 2.310 -----

According to the p-values of tests, we conclude that Gumbel copula and Frank 
copula have best fit to the two datasets respectively. Therefore Crime data are tail 
dependent, where TDC is equal to 0.574 and Stock data are tail independent. In the 
following, all proposed tests in Section 2 are performed on the two datasets and 
the results are displayed in Table 6. It should be noted that in carrying out these 
tests, for each dataset, the threshold c is chosen to have at least 30 observations 
greater than of the threshold value. Therefore, in two datasets, the thresholds are 
equal to –0.15 and –0.25 respectively. 

Table 6. Independence tests for two datasets

Test
p.value

Crime Data Stock Data

Neyman-Pearson 4.891685e-09 0.7543855

Fisher’s κ 4.364887e-02 0.2194695

Kolmogorov-Smirnov 1.245545e-03 0.4993588

Chi-square 1.514254e-02 0.6754989

Cramer-von Mises 1.027966e-03 0.7278006

Anderson-Darling 3.082995e-04 0.6549564

In Crime data, all tests reject the null hypothesis of the tail independence of 
variables density and crmrte at 0.05 level, i.e., two variables density and crmrte 
are tail dependent; therefore, if the density of people per square mile exceeds 
a certain threshold, then crimes committed per person will exceed that specific 
threshold.

In Stock data, tail independence is not rejected by any of the tests at 0.05 
level, i.e., stock prices of the two Japanese automakers Honda and Mazda are tail 
independent. Therefore tail independence tests confirmed the results of Table 5. It 
is noteworthy that if the TDC is estimated using the unsuitable copula function, 
the tail independence tests show this matter; this indicates the importance of using 
the test to verify the existence of tail dependence in the data.
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5. 	 Conclusion
In this paper, we recommended two new statistics Cramer-von Mises and 

Anderson-Darling for tail independence in extreme value models-based approach 
of Falk and Michel (2006). Simulations show that two tests are better than the 
proposed tests by Falk and Michel. Also, we illustrated the importance of using 
these tests by using two real datasets, while the tail dependence maybe is estimated 
incorrectly and this wrong is shown by tests.
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