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ABSTRACT 

In the application of nonparametric regression model, it is a well-established fact that the 
bandwidth - also called smoothing parameter- is the single most crucial parameter that 
determines the quality of the estimated responses that are obtained from the regression 
procedure, and that its choice (how small or large the size) is hugely influenced by the criterion 
that is applied for its selection. Under small-sample settings, which is typical of response surface 
studies, the penalized Prediction Error Sum of Squares (PRESS**) criterion is recommended 
for selecting this all-important parameter. However, for the purpose of selecting bandwidths of 
improved statistical properties, we propose a modified version of the PRESS** criterion 
specifically for Local Quadratic Regression (LQR) model. Results from simulated data as well 
as those from two popular problems from the literature show that LQR procedure that utilizes 
the bandwidths selected via the proposed modified criterion performs outstandingly better than 
its counterpart that utilizes bandwidths selected via PRESS** criterion. 
 
Keywords: Desirability Function, Hat matrix, Penalized Prediction Error Sum of Squares, 

Response Surface Methodology. 
 

1. INTRODUCTION:   

Although, response surface methodology (RSM) was developed by Box and Wilson in 1951 in 
the field of agricultural science, the methodology has now gained prominence as an important 
collection of statistical tools that is applied in process and product optimization in the fields of 
science, engineering and technology (Hill and Hunter, 1996; Rajewski and Dobrzynski-Inger, 
2021).  
 
In the modeling phase of RSM, it is assumed that the relationship between a response variable 
𝑦𝑦𝑦𝑦 and  𝑘𝑘𝑘𝑘 explanatory variables 𝑥𝑥𝑥𝑥!,		𝑥𝑥𝑥𝑥$, … , 𝑥𝑥𝑥𝑥%, takes the form: 
 
   𝑦𝑦𝑦𝑦& = 𝑓𝑓𝑓𝑓)𝑥𝑥𝑥𝑥&!,		𝑥𝑥𝑥𝑥&$, … , 𝑥𝑥𝑥𝑥&%* + 𝜺𝜺𝜺𝜺&,				𝑖𝑖𝑖𝑖 = 1,… , 𝑛𝑛𝑛𝑛                             (1) 

where 𝑦𝑦𝑦𝑦& is the output at the 𝑖𝑖𝑖𝑖'( data point, 𝑥𝑥𝑥𝑥&), 𝑗𝑗𝑗𝑗 = 1,2, … , 𝑘𝑘𝑘𝑘, is the value of the 𝑗𝑗𝑗𝑗'( explanatory 
variable at the 𝑖𝑖𝑖𝑖'( data point, 𝑓𝑓𝑓𝑓 represents the true but unknown function that depicts the exact 
mathematical relationship between the variables, 𝜺𝜺𝜺𝜺& is a random error term assumed to be 
independent, identically distributed with mean zero and constant variance 𝜎𝜎𝜎𝜎$,  and 𝑛𝑛𝑛𝑛 is the 
sample size (Montgomery, 2005; Castillo, 2007). 
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In order to get an estimate of the relationship defined in (1) for a given study, a low-order 
polynomial is assumed for 𝑓𝑓𝑓𝑓 and data from a designed experiment is used in fitting the assumed 
polynomial. The ultimate goal of RSM is to determine the values (setting) of the explanatory 
variables that optimize the fitted polynomial model (Myers, et al., 2009; He, et al., 2012; 
Yeniay, 2014).  
 
A high-performing fitted model of a study does not only provide the researcher an opportunity 
to critically study the mathematical relationship among the variables but also enables the 
prediction of outputs at respective settings of the explanatory variables with high accuracy. 
Hence, a premium value is placed on a proficiently fitted predictive model (Pickle, et al., 2008; 
Wan and Birch, 2011). 
 
The traditional regression model for estimating 𝑓𝑓𝑓𝑓 in (1) is the ordinary least squares (OLS). 
However, if the data consists of salient patterns and trends that might be overlooked by OLS, 
nonparametric regression models could provide better alternatives (Hardle, et al., 2005; Wan 
and Birch, 2011).  Essentially, nonparametric regression models such as LQR are applied if, 
according to Myers (1999), the following are important research targets: 

1. The researcher is interested in optimizing a response. 
2. The researcher is less interested in an interpretive function (i.e., interpreting the 

estimated regression coefficients) and more interested in studying the shape of the 
response surface. 

3. The functional form of the relationship between the explanatory variables and the 
response is not well behaved. 

 

Mathematically, LQR estimate 𝑦𝑦𝑦𝑦&
(+,-) of 𝑦𝑦𝑦𝑦& takes the form: 

 
       𝑦𝑦𝑦𝑦3&

(+,-) = 𝒙𝒙𝒙𝒙𝒊𝒊𝒊𝒊0(𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒
0 𝑾𝑾𝑾𝑾𝒊𝒊𝒊𝒊𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒)2𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒

0 𝑾𝑾𝑾𝑾𝒊𝒊𝒊𝒊𝒚𝒚𝒚𝒚,    (2) 

where 𝒚𝒚𝒚𝒚 is an 𝑛𝑛𝑛𝑛	 × 	1 vector of response, 𝑾𝑾𝑾𝑾𝒊𝒊𝒊𝒊 is an 𝑛𝑛𝑛𝑛	 × 	𝑛𝑛𝑛𝑛 diagonal matrix of weights for 
estimating 𝑦𝑦𝑦𝑦&, 𝒙𝒙𝒙𝒙𝒊𝒊𝒊𝒊0 is the 𝑖𝑖𝑖𝑖'(	row vector of the LQR model matrix 𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒, 𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒

0  is the transposed LQR 
model matrix whose general form is given by:  

𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒 =

⎣
⎢
⎢
⎡1 𝑥𝑥𝑥𝑥!! 𝑥𝑥𝑥𝑥!$
1 𝑥𝑥𝑥𝑥$! 𝑥𝑥𝑥𝑥$$
⋮
1

⋮
𝑥𝑥𝑥𝑥4!

⋮
𝑥𝑥𝑥𝑥4$

					

⋯ 𝑥𝑥𝑥𝑥!% 𝑥𝑥𝑥𝑥!!$

⋯ 𝑥𝑥𝑥𝑥$% 𝑥𝑥𝑥𝑥$!$
⋱
⋯

⋮
𝑥𝑥𝑥𝑥4%

⋮
𝑥𝑥𝑥𝑥4!$

					

𝑥𝑥𝑥𝑥!$$ ⋯ 𝑥𝑥𝑥𝑥!%$

𝑥𝑥𝑥𝑥$$$ ⋯ 𝑥𝑥𝑥𝑥$%$
⋮

𝑥𝑥𝑥𝑥4$$
⋱
…

⋮
𝑥𝑥𝑥𝑥4%$ ⎦

⎥
⎥
⎤
, 

 
In matrix form, the vector of LQR estimates presented in (2) is expressed as: 
 

           

⎣
⎢
⎢
⎢
⎡𝒚𝒚𝒚𝒚D𝟏𝟏𝟏𝟏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)

𝒚𝒚𝒚𝒚D𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)

⋮
𝒚𝒚𝒚𝒚D𝒏𝒏𝒏𝒏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)⎦

⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏(𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒

0 𝑾𝑾𝑾𝑾𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒)2𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒
0 𝑾𝑾𝑾𝑾𝟏𝟏𝟏𝟏

𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐(𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒
0 𝑾𝑾𝑾𝑾𝟐𝟐𝟐𝟐𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒)2𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒

0 𝑾𝑾𝑾𝑾𝟐𝟐𝟐𝟐
⋮

𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏(𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒
0 𝑾𝑾𝑾𝑾𝒏𝒏𝒏𝒏𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒)2𝟏𝟏𝟏𝟏𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒

0 𝑾𝑾𝑾𝑾𝒏𝒏𝒏𝒏⎦
⎥
⎥
⎥
⎤
E

𝒚𝒚𝒚𝒚𝟏𝟏𝟏𝟏
𝒚𝒚𝒚𝒚𝟐𝟐𝟐𝟐
⋮

𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏

F,                               (3) 
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                        =

⎣
⎢
⎢
⎢
⎡𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃)

𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!

⋮
(𝒃𝒃𝒃𝒃)

𝒉𝒉𝒉𝒉𝒏𝒏𝒏𝒏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃)⎦

⎥
⎥
⎥
⎤

E

𝒚𝒚𝒚𝒚𝟏𝟏𝟏𝟏
𝒚𝒚𝒚𝒚𝟐𝟐𝟐𝟐
⋮

𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏

F,               (4) 

    
           = 𝑯𝑯𝑯𝑯(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)𝒚𝒚𝒚𝒚,               (5)
  
 

where 𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃) = J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝟏𝟏𝟏𝟏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) …𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)K is the 𝑖𝑖𝑖𝑖'( row vector of the 𝑛𝑛𝑛𝑛	 × 	𝑛𝑛𝑛𝑛 LQR Hat 

matrix, 𝑯𝑯𝑯𝑯(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃). 
 
If all the quadratic terms in the LQR model matrix 𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒 are deleted, LQR reduces to local linear 
regression (Anderson-Cook and Prewitt, 2005).  
 
The 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ entry, say 𝑤𝑤𝑤𝑤:: of the weight matrix 𝑾𝑾𝑾𝑾𝒐𝒐𝒐𝒐 for estimating 𝑦𝑦𝑦𝑦< is obtained from the product 
kernel given as:  
   

   𝑤𝑤𝑤𝑤<: = ∏)=!
% 𝐾𝐾𝐾𝐾 J>"#2>$#

?$
K ∑ ∏)=!

% 𝐾𝐾𝐾𝐾 J>"#2>%#
?%

K4
&=!S ,    𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛,    (6) 

 

where 𝐾𝐾𝐾𝐾 J>"#2>$#
?$

K = 𝑒𝑒𝑒𝑒2@
&"#'&%#

($
A
)

 is the simplified Gaussian function which assigns relatively 

heavier weights to the observations close to 𝑥𝑥𝑥𝑥<) than those far from 𝑥𝑥𝑥𝑥<), and 𝑏𝑏𝑏𝑏&, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, 
are referred to as the local or locally adaptive bandwidths which reduce to a fixed or global 
bandwidth 𝑏𝑏𝑏𝑏 in situations where we have 𝑏𝑏𝑏𝑏! = 𝑏𝑏𝑏𝑏$ … = 𝑏𝑏𝑏𝑏4 = 𝑏𝑏𝑏𝑏 (Edionwe and Mbegbu, 2014). 
 
In nonparametric regression procedure, the values, 𝑥𝑥𝑥𝑥&) of the explanatory variables are 
transformed such that 0 ≤ 𝑥𝑥𝑥𝑥&) ≤ 1, and consequently, 𝑏𝑏𝑏𝑏&, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, are constrained to lie 
in the interval 0 < 𝑏𝑏𝑏𝑏& ≤ 1 (Edionwe, et al., 2016).  
 
A model for selecting local bandwidths presented in Edionwe, et al. (2017) and Edionwe, et al. 
(2018) is given by: 

               𝑏𝑏𝑏𝑏& = B(CD2E%)
C(D42!)

	,                   (7) 

where 𝐶𝐶𝐶𝐶 ≥ 0 and 𝑁𝑁𝑁𝑁 > 0 are data-driven tuning parameters and 𝑇𝑇𝑇𝑇 = ∑ 𝑦𝑦𝑦𝑦&4
& .  

 
The bandwidth is adjudged the most crucial parameter as far as nonparametric regression 
procedure are concerned and several criteria for its selection based on factors such as data type 
(single and equally-spaced explanatory variable, econometric data, e.tc) and for a specific 
estimation task (density estimation, regression function estimation, estimation of the derivative 
of regression function, e.tc) (Fan and Gijbels, 1996; Loader, 1999). 
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For small-sample studies such as RSM, the PRESS** criterion developed by Mays et al (2001) 
for selecting bandwidths in the application of both nonparametric and semiparametric 
regression models is given by:    

                       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) =
∑ @E%2EH%,'%

(,-.)(𝒃𝒃𝒃𝒃)A
)0

%12

			J42':@𝑯𝑯𝑯𝑯(,-.)(𝒃𝒃𝒃𝒃)ALMJ(42%2!)@33456&'334(𝒃𝒃𝒃𝒃)
33456&

AL
,               

                                         = 	 N-OPP

			QRMJ(42%2!)@33456&'334(𝒃𝒃𝒃𝒃)
33456&

AL
’                        (8) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ST> = ∑ J𝑦𝑦𝑦𝑦& − 𝑦𝑦𝑦𝑦3&
(+,-)(𝒃𝒃𝒃𝒃)K

$
4
&=!  is the maximum Sum of Squared Errors obtained as 

b tends to infinity, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒃𝒃𝒃𝒃) is the Sum of Squared Errors for a given vector of bandwidths, 𝒃𝒃𝒃𝒃 =
(𝑏𝑏𝑏𝑏!, 𝑏𝑏𝑏𝑏$, … , 𝑏𝑏𝑏𝑏4), Degree of Freedom (DF)= 	𝑛𝑛𝑛𝑛 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟c𝑯𝑯𝑯𝑯(+,-)(𝒃𝒃𝒃𝒃)d, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟c𝑯𝑯𝑯𝑯(+,-)(𝒃𝒃𝒃𝒃)d is the sum of 
the diagonal elements of the LQR Hat matrix for a given vector of bandwidths, 𝒃𝒃𝒃𝒃 =
(𝑏𝑏𝑏𝑏!, 𝑏𝑏𝑏𝑏$, … , 𝑏𝑏𝑏𝑏4), and 𝑦𝑦𝑦𝑦3&,2&

(+,-)(𝒃𝒃𝒃𝒃) is the leave-one-out estimate of 𝑦𝑦𝑦𝑦& with the 𝑖𝑖𝑖𝑖'( observation left 
out. 

In applying (7) to generate bandwidths for a given data, we search for the optimal values, 𝐶𝐶𝐶𝐶∗and 
𝑁𝑁𝑁𝑁∗, of C and N, respectively, that give the optimal local bandwidths for minimizing the 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion. The phase succeeding the modelling phase in RSM is the optimization 
phase, where the setting of the explanatory variables that optimize the fitted regression model 
according to the process specifications (or production requirements) is sought.   

In studies that involve say 𝑚𝑚𝑚𝑚 responses, 𝑚𝑚𝑚𝑚 > 1, the goal is to obtain the setting of the 
explanatory variables which simultaneously optimize the 𝑚𝑚𝑚𝑚 fitted models with respect to their 
individual process specifications (Harrington, 1965; Derringer and Suich, 1980).  
 
A few criteria for carrying out multiple response optimization exist amongst which the 
desirability measure (function) stands out. The desirability function, with respect to the process 
specification of individual response, transforms the fitted model, 𝑦𝑦𝑦𝑦3U(𝒙𝒙𝒙𝒙), into a scalar measure, 

𝑑𝑑𝑑𝑑U J𝑦𝑦𝑦𝑦3U(𝒙𝒙𝒙𝒙)K,	 𝑝𝑝𝑝𝑝 = 1,2, … ,𝑚𝑚𝑚𝑚, after which the setting of  each of the explanatory variables that 

maximize the geometric mean of the 𝑚𝑚𝑚𝑚 transformed scalar measures is subsequently sought 

(Wan and Birch, 2011). The classifications of 𝑑𝑑𝑑𝑑U J𝑦𝑦𝑦𝑦3U(𝒙𝒙𝒙𝒙)K based on the process specification of 
the responses is presented in Appendix A. 
 

In this paper, the optimization procedure including the minimization of the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) 
criterion in (8), the proposed modified 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion in (10), and the maximization of 
the desirability measure in (4*) in the Appendix for the determination of the optimal setting of 
the explanatory variables are all carried out using the Genetic Algorithm (GA) optimization 
toolbox in Matlab.  
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II. METHODOLOGY 

The Penalizing Factor of the 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷∗∗(𝒃𝒃𝒃𝒃) vis-à-vis the Flexibility of the LQR Hat 
Matrix 

In general, the 𝑛𝑛𝑛𝑛	 × 	𝑛𝑛𝑛𝑛 diagonal matrix weights 𝑾𝑾𝑾𝑾𝒐𝒐𝒐𝒐 derived from (6) for estimating 𝑦𝑦𝑦𝑦< can be 
expressed as:  

            𝑾𝑾𝑾𝑾𝒐𝒐𝒐𝒐 = E

𝑤𝑤𝑤𝑤V! 0 ⋯ 0
0 𝑤𝑤𝑤𝑤V$ ⋯ 0
⋮
0

⋮
0

⋱ 	0
… 𝑤𝑤𝑤𝑤V4

F,  

        =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
l

∏ X
'8
&"#'&2#

(2
9
)

:
#12

∑ ∏ X
'8
&"#'&%#

(%
9
)

:
#12

0
%12

m 0 ⋯ 0

0 l
∏ X

'8
&"#'&)#

()
9
)

:
#12

∑ ∏ X
'8
&"#'&%#

(%
9
)

:
#12

0
%12

m … 0

⋮
0

⋮
0

⋱
⋯

⋮

l
∏ X

'8
&"#'&0#

(0
9
)

:
#12

∑ ∏ X
'8
&"#'&%#

(%
9
)

:
#12

0
%12

m
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

 
According to Cleveland (1979), Fan and Gijbels (1996), Mays and Birch (1998), the advantage 
of LQR over OLS is its flexibility which is a function of the choice of bandwidths that are 
selected for the procedure.   
 
In situations where 𝑏𝑏𝑏𝑏!, 𝑏𝑏𝑏𝑏$, …, 𝑏𝑏𝑏𝑏4 all tend to 1 and above in (3), the elements of 𝑾𝑾𝑾𝑾𝟏𝟏𝟏𝟏, 𝑾𝑾𝑾𝑾𝟐𝟐𝟐𝟐,… ,𝑾𝑾𝑾𝑾𝒏𝒏𝒏𝒏 
which respectively form part of the row vectors 𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃), 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃), … , 𝒉𝒉𝒉𝒉𝒏𝒏𝒏𝒏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃), all 
would return the same value, say 𝑤𝑤𝑤𝑤. That is 𝑤𝑤𝑤𝑤!! = 𝑤𝑤𝑤𝑤$$ = ⋯ = 𝑤𝑤𝑤𝑤44 = 𝑤𝑤𝑤𝑤, and consequently, 
𝑾𝑾𝑾𝑾𝟏𝟏𝟏𝟏 = 𝑾𝑾𝑾𝑾𝟐𝟐𝟐𝟐 = ⋯ = 𝑾𝑾𝑾𝑾𝒏𝒏𝒏𝒏. In this case, assuming that the same model matrix 𝑿𝑿𝑿𝑿𝒒𝒒𝒒𝒒 is used for OLS 

procedure, we will get 𝒚𝒚𝒚𝒚D𝟏𝟏𝟏𝟏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) = 𝒚𝒚𝒚𝒚D𝟏𝟏𝟏𝟏

(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶), 𝒚𝒚𝒚𝒚D𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) = 𝒚𝒚𝒚𝒚D𝟐𝟐𝟐𝟐

(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶), …	, 𝒚𝒚𝒚𝒚D𝒏𝒏𝒏𝒏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) = 𝒚𝒚𝒚𝒚D𝒏𝒏𝒏𝒏

(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶), meaning that 
LQR returns the same vector of estimated responses as that of the OLS. On the other hand, the 
more distinct or dissimilar the elements of 𝑾𝑾𝑾𝑾𝟏𝟏𝟏𝟏, 𝑾𝑾𝑾𝑾𝟐𝟐𝟐𝟐, … , 𝑾𝑾𝑾𝑾𝒏𝒏𝒏𝒏 in the vectors 
𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃), 𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃), … , 𝒉𝒉𝒉𝒉𝒏𝒏𝒏𝒏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃), respectively, the higher the flexible of the resulting 

LQR over that of the OLS.    
 
The advantage of nonparametric regression models over their parametric counterpart is 
flexibility and, therefore, one of the ways to upgrade the flexibility of LQR is to ensure that the 
bandwidths selected allow the 1 × 𝑛𝑛𝑛𝑛 elements of each of the vectors 𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)!(𝒃𝒃𝒃𝒃) =

J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝟏𝟏𝟏𝟏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝟐𝟐𝟐𝟐

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) …𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)K, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, to be as distinct from one another as possible. In other 

words, since distinctiveness implies variability, the variability of the 𝑛𝑛𝑛𝑛 elements of each of the 
rows of the Hat matrix should be as high as possible.  
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There are two shortcomings of the DF that need to be highlighted as it relates to its computation 
in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion: (1) the DF, as it is computed, is not a function of the 
distinctiveness (variability) of the elements of the row vectors of the LQR Hat matrix and so 
does not in any way enhance the flexibility of the LQR. (2) Two, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑛𝑛𝑛𝑛 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟c𝑯𝑯𝑯𝑯(+,-)(𝒃𝒃𝒃𝒃)d, 
where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟c𝑯𝑯𝑯𝑯(+,-)(𝒃𝒃𝒃𝒃)d is the sum of the diagonal elements of the LQR Hat matrix, makes use 
of only 𝑛𝑛𝑛𝑛 of the 𝑛𝑛𝑛𝑛 times 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛$ elements of the Hat matrix, neglecting the remaining 
𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 − 1) = 𝑛𝑛𝑛𝑛$ − 𝑛𝑛𝑛𝑛 elements. This negligence has negative consequences on the regression 
procedure since the unused 𝑛𝑛𝑛𝑛$ − 𝑛𝑛𝑛𝑛 elements contain important information about the data 
under study.  Thus, there is a need for the inclusion of an appropriate statistic in the penalizing 
factor of the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) in order to address these shortcomings.  
 
Methodology for the modification of the penalizing factor in the 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷∗∗(𝒃𝒃𝒃𝒃) criterion  
 
The proposed modification of the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion is motivated by the fact that the impact 
of a statistical measure that allows the elements in each of the rows of the LQR Hat matrix to 
be as distinct (dissimilar or variable) as possible would trump that of the DF that considers only 
the sum of the diagonal elements of the same matrix.  
 
In modifying the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion, the following objectives are targeted to be achieved: 

i. to provide for the inclusion of a penalizing factor that utilizes every bit of information 
which the entire 𝑛𝑛𝑛𝑛$ elements of the LQR Hat matrix can provide. 

ii. to provide for the inclusion of a penalizing factor that allows the flexibility of LQR to be 
over and above that of the OLS. 

 
If the proposed modified 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion is designated by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(𝒃𝒃𝒃𝒃), then 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(𝒃𝒃𝒃𝒃) may be given by: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(𝒃𝒃𝒃𝒃) = N-OPP

	J(42%2!)@33456&'334(𝒃𝒃𝒃𝒃)
33456&

AL,
,               (9) 

 
where 𝑄𝑄𝑄𝑄 is a function of a statistical measure that encapsulates objectives (i) and (ii) above. 
 
From previous section,  it is shown that the flexibility of the LQR derives from the dissimilarity 
or variability of the 𝑛𝑛𝑛𝑛 elements in each of the rows of LQR Hat matrix. Hence, we compute the 

variance of the 𝑛𝑛𝑛𝑛 elements in each vector	𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃) = J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝟏𝟏𝟏𝟏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) …𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊𝒏𝒏𝒏𝒏

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)K, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, 
of the LQR Hat matrix. This gives a 𝑛𝑛𝑛𝑛	 × 	1 vector of variances, say: 
 

          𝑽𝑽𝑽𝑽 =

⎝

⎜⎜
⎛

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 J𝒉𝒉𝒉𝒉𝟏𝟏𝟏𝟏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)K

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 J𝒉𝒉𝒉𝒉𝟐𝟐𝟐𝟐
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)K
⋮

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 J𝒉𝒉𝒉𝒉𝒏𝒏𝒏𝒏
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)K⎠

⎟⎟
⎞

, for a given vector of bandwidths, 𝒃𝒃𝒃𝒃.   

 

Next, the sum of the variances in 𝑽𝑽𝑽𝑽 is obtained as  ∑𝑽𝑽𝑽𝑽 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟(𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃))4

&=! .  
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Finally, in order to ensure that the proposed modified 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) selects bandwidths 
according to objective (ii) above, we will have 𝑄𝑄𝑄𝑄 given by: 
 

        𝑄𝑄𝑄𝑄 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)K4

&=! − ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶)K4

&=! .  
 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶)K, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, is the variance of the elements in the 𝑖𝑖𝑖𝑖'( row of the 𝑛𝑛𝑛𝑛 by 𝑛𝑛𝑛𝑛 

OLS Hat matrix, 𝑯𝑯𝑯𝑯(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶).  
 
Therefore, the proposed bandwidths selection criterion comes out as: 
           

    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(𝒃𝒃𝒃𝒃) = N-OPP

J(42%2!)@33456&'334(𝒃𝒃𝒃𝒃)
33456&

ALJ∑ ]T:^𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)`0

%12 2∑ ]T:^𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶)(𝒃𝒃𝒃𝒃)`0

%12 L
,                  (10) 

 
 
Clearly, the statistic, ∑𝑽𝑽𝑽𝑽 =∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟(𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊

(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃))4
&=!  is computed from the entire 𝑛𝑛𝑛𝑛$ elements of 

the LQR Hat matrix. Further, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(𝒃𝒃𝒃𝒃) is minimized at a given vector of bandwidths, 𝒃𝒃𝒃𝒃 at 

which the difference ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 {𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳)(𝒃𝒃𝒃𝒃)|4

&=! − ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟 J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑶𝑶𝑶𝑶)(𝒃𝒃𝒃𝒃)K4

&=!  (that is the flexibility 

between the LQR and OLS) is as large as possible. 
 
An algorithm written in Matlab codes for implementing (10) is provided in Appendix B. It 
utilizes the genetic toolbox in Matlab by linking the function name with a @ handle.         
 

III. APPLICATION  

LQR that utilizes the proposed 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(b) criterion for bandwidths selection (herein 
designated 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄* for ease of reference) is applied to two multiple response problems from 
RSM literature and two sets of simulated data and results compared with those from OLS and 
LQR that utilizes the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) criterion.  

The performance statistics for comparison include SSE and Coefficient of Determination, (𝑃𝑃𝑃𝑃$), 
which respectively indicate the nearness of the fitted responses to the observed values and a 
measure of variability in the data that is explained or captured by each regression model.  

For each model, the values of the sum of the variances, ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟J𝒉𝒉𝒉𝒉𝒊𝒊𝒊𝒊
(.)K4

&=!  of the elements in each 

row of the Hat matrix is presented under the column labelled SRV in Tables 4 and 9.  

For the comparison of optimization results, the values of desirability measures in (4*) in the 
Appendix were used.  

The best value for each performance statistics (goodness-of-fit and optimization solution) are 
shown in bold. 

1. The chemical process data 
 
This problem originates from Montgomery (2005) were it was analyzed using OLS. It involves 
three response variables, namely the 𝑦𝑦𝑦𝑦! (yield), 𝑦𝑦𝑦𝑦$ (viscosity), and 𝑦𝑦𝑦𝑦b (molecular weight). Two 
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inputs (factors) were found to influence these responses: reaction time (𝑥𝑥𝑥𝑥!) and temperature 
(𝑥𝑥𝑥𝑥$). A full second-order polynomial was found to be adequate for each of the response 
variables.  
 
The process specifications for each response are as follows: 

Maximize 𝑦𝑦𝑦𝑦! with lower limit 𝐿𝐿𝐿𝐿 = 78.5, and target value, ∅ = 80; 
𝑦𝑦𝑦𝑦$ is to take a value in the range of 𝐿𝐿𝐿𝐿 = 62 and 𝑈𝑈𝑈𝑈 = 68 with target value, ∅ =65; 
Minimize 𝑦𝑦𝑦𝑦bwith upper limit 𝑈𝑈𝑈𝑈 = 3300 and target value, ∅ = 3100.  

 
The data, collected via a Central Composite Design (CCD), is presented in Table 1. The optimal 
tuning parameters for the nonparametric models based on 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\(𝒃𝒃𝒃𝒃) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗∗(𝒃𝒃𝒃𝒃) for 
𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄* and LQR, respectively, are given in Table 2, and the corresponding locally adaptive 
bandwidths are shown in Table 3. The goodness-of-fit and optimization results for each of the 
regression models are presented in Tables 4 and 5, respectively. 
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In Table 4, it can be noticed that 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗ gives better SSE and R2 across the three responses, 
signifying a model of better fit than the OLS and LQR. Further, 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗ has largest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 across 
the three responses as well. Having the largest SRV implies that the proposed bandwidths 
selection criterion, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\, guarantees higher flexibility of the 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗ over the OLS and the 
LQR.    

Figure 1 shows the plots of residuals of 𝑦𝑦𝑦𝑦3! (Top Left), 𝑦𝑦𝑦𝑦3$ (Top Right), and 𝑦𝑦𝑦𝑦3b (Bottom Left) 
show that those from the LQR* are seen to lie relatively closest to the zero residual lines, 
indicative of relatively better fit of the LQR* to the given data.      

 
Figure 1: Graphical comparison of the residuals plots of response estimates. 

 
The results presented in Table 5 show that 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗ found a better setting of the explanatory 
variables that simultaneously optimizes the three responses with a desirability measure of 
72.9%, indicating a product that meets approximately 73% of the production requirements as 
compared with the 41% for the LQR. The enhanced flexibility of LQR enables its exploration 
of the solution space for better optimal results. 
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 Table 5: Optimization results based on the desirability measure for the chemical process data. 

 
2. Tire thread data 
 
This data is taken from a study carried out in Derringer and Suich (1980) for the development 
of a material for the manufacture of tire thread.  The inputs that were found to affect the quality 
of the tire thread include hydrated silica level (𝑥𝑥𝑥𝑥!), silane coupling agent (𝑥𝑥𝑥𝑥$), and sulphur level 
(𝑥𝑥𝑥𝑥b). Four outputs (responses) representing the different aspects in the quality of the tire thread 
are PICO Abrasive index (𝑦𝑦𝑦𝑦!), 200% modulus (𝑦𝑦𝑦𝑦$), Elongation at break (𝑦𝑦𝑦𝑦b), and Hardness 
(𝑦𝑦𝑦𝑦c).  
 
The product specifications are as follows: 

Maximize 𝑦𝑦𝑦𝑦!, with L= 120 and target value ∅ =170;  
Maximize 𝑦𝑦𝑦𝑦$, with L =1000 and ∅ =2000; 
400 < 𝑦𝑦𝑦𝑦b < 600, ∅ = 500; 60 < 𝑦𝑦𝑦𝑦c < 75, ∅ = 67.5. 

 
For the OLS, apart from 𝑦𝑦𝑦𝑦b for which a first-order polynomial was specified, a full second-
order polynomial was specified for the fitting of 𝑦𝑦𝑦𝑦!, 𝑦𝑦𝑦𝑦$, 𝑦𝑦𝑦𝑦c. The data collected via a CCD is 
presented in Table 6. The optimal tuning parameters for the locally adaptive bandwidths for 
the respective regression models are shown in Table 7, and the corresponding adaptive 
bandwidths are presented in Table 8. Tables 9 and 10 present the regression statistics and 
optimization results, respectively. 

Models 𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐 Max(𝒚𝒚𝒚𝒚#𝟏𝟏𝟏𝟏) ∅(𝒚𝒚𝒚𝒚#𝟐𝟐𝟐𝟐) 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦	(𝒚𝒚𝒚𝒚#𝟑𝟑𝟑𝟑) d(𝒚𝒚𝒚𝒚#𝟏𝟏𝟏𝟏) d(𝒚𝒚𝒚𝒚#𝟐𝟐𝟐𝟐) d(𝒚𝒚𝒚𝒚#𝟑𝟑𝟑𝟑) D(%) 
OLS 0.4449 0.2226 78.7616 66.4827 3229.9 0.1744 0.5058 0.3504 31.3800 
LQR 0.4892 0.2093 78.7993 66.1764 3188.5 0.1996 0.6079 0.5576 40.7450 
LQR* 0.4473 0.2180 79.0816 65.0000 3088.1 0.3877 1.0000 1.0000 72.9183 
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    Table 8: Bandwidths obtained from optimal tuning parameters in Table 7. 

 
Table 9 shows that 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄* gives the best SSE and R2 for 𝑦𝑦𝑦𝑦!, 𝑦𝑦𝑦𝑦b, and 𝑦𝑦𝑦𝑦c, with competitive 
respective results for 𝑦𝑦𝑦𝑦$. Further, it gives the largest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for the four responses, where the 
largest SRV indicates a higher flexibility of LQR* in comparison to that of OLS and LQR 
models. 
 

 
Table 9: Regression statistics of each model and response for the tire thread data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the average, the plots of residuals of 𝑦̂𝑦𝑦𝑦1 (Top Left), 𝑦̂𝑦𝑦𝑦2 (Top Right), 𝑦𝑦𝑦𝑦̂3 (Bottom Left), and 
𝑦𝑦𝑦𝑦̂4 (Bottom Right) from Figure 2 show that those from the LQR* are seen to lie comparatively 
closest to the zero residual lines. This reveals that the LQR* does a better job in terms of the 
estimation to the given data. 

𝑖𝑖𝑖𝑖  𝒚𝒚𝒚𝒚𝟏𝟏𝟏𝟏 𝒚𝒚𝒚𝒚𝟐𝟐𝟐𝟐 𝒚𝒚𝒚𝒚𝟑𝟑𝟑𝟑 𝒚𝒚𝒚𝒚𝟒𝟒𝟒𝟒 

 LQR LQR* LQR LQR* LQR LQR* LQR LQR* 

1  0.3873 0.3399 0.2579 0.1116 0.2248 0.1745 0.4497 0.2117 
2  0.3701 0.3272 0.2375 0.1007 0.1832 0.1764 0.3598 0.1398 
3  0.3730 0.3293 0.2070 0.0844 0.2940 0.1712 0.8089 0.4997 
4  0.2956 0.2721 0.9686 0.4905 0.0656 0.1819 0.7011 0.4133 
5  0.3863 0.3392 0.0489 0.0001 0.3424 0.1690 0.2700 0.0678 
6  0.3587 0.3187 0.4563 0.2173 0.0863 0.1809 0.4317 0.1973 
7  0.3587 0.3187 0.4466 0.2122 0.1832 0.1764 0.8268 0.5141 
8  0.3520 0.3138 0.3548 0.1633 0.1625 0.1774 0.5395 0.2837 
9  0.3873 0.3399 0.1917 0.0763 0.3078 0.1706 0.7550 0.4565 
10  0.3377 0.3032 0.6607 0.3264 0.0794 0.1812 0.5395 0.2837 
11  0.3930 0.3441 0.1560 0.0572 0.2594 0.1728 0.2880 0.0822 
12  0.3291 0.2968 0.5842 0.2856 0.1625 0.1774 0.7191 0.4277 
13  0.3739 0.3300 0.9125 0.4606 0.2594 0.1728 0.3598 0.1398 
14  0.3386 0.3039 0.7086 0.3519 0.1002 0.1803 0.5754 0.3125 
15  0.3577 0.3180 0.4619 0.2203 0.1625 0.1774 0.5395 0.2837 
16  0.3577 0.3180 0.4619 0.2203 0.1625 0.1774 0.4856 0.2405 
17  0.3510 0.3131 0.3828 0.1782 0.1971 0.1758 0.4676 0.2261 
18  0.3491 0.3116 0.3548 0.1633 0.1971 0.1758 0.4676 0.2261 
19  0.3462 0.3095 0.4415 0.2095 0.1694 0.1770 0.5035 0.2549 
20  0.3491 0.3116 0.4843 0.2323 0.1694 0.1770 0.5395 0.2837 

Response Model PRESS** 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 DF 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑺𝑺 SSE 𝑷𝑷𝑷𝑷𝟐𝟐𝟐𝟐 
𝑦𝑦𝑦𝑦G OLS - - 10.0000 0.4737 1841.1380 83.6544 

LQR 238.9268 - 5.6592 0.6724 148.9582 98.6775 
LQR* - 129.8541 5.2560 0.7109 130.2447 98.8437 

𝑦𝑦𝑦𝑦H OLS - - 10.0000 0.4737 1204800 71.2487 
LQR 171260 - 6.1151 0.6415 148440 96.4575 
LQR* - 564280 5.0377 0.7331 51164 98.7790 

𝑦𝑦𝑦𝑦I OLS - - 16.0000 0.1579 72914 68.0449 
LQR 4905.6 - 5.0414 0.7325 2803.1 98.7715 
LQR* - 2319.6 5.0084 0.7360 2800 98.7729 

𝑦𝑦𝑦𝑦J OLS - - 10.0000 0.4737 50.8573 86.7296 
LQR 6.7645 - 7.7850 0.5091 11.9695 96.8767 
LQR* - 4.1705 5.1290 0.7239 4.2704 98.8857 



62 | The Philippine Statistician Vol. 72, Number 1 (2023)

 
 

 
      Figure 2: Graphical comparisons of the residual plots for the tire thread data. 

 
In Table 10, it can be seen that the comparatively better regression statistics of 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗ results in 
a better set of optimal values of the explanatory variables which corresponds to a desirability 
measure of 88.012%. This solution indicates a tire thread that meets approximately 88% of the 
production specifications. 
 
Table 10: Optimization results based on the desirability measure for the tire thread data. 

 
 
3.  Simulation study  
 
The simulation study focuses on how each of the regression models performs when random 
errors with different variances, 𝜎𝜎𝜎𝜎$ are added to the outputs generated from three different 
polynomial models involving one, two and three explanatory variables and given as follows: 
 
Polynomial model I:  
𝑦𝑦𝑦𝑦& = 29 + 6𝑥𝑥𝑥𝑥!& − 10𝑥𝑥𝑥𝑥!&$ + 𝜀𝜀𝜀𝜀&,  𝑖𝑖𝑖𝑖 = 1, 2, … , 𝑛𝑛𝑛𝑛,                        (11) 
 
Polynomial model II:  
𝑦𝑦𝑦𝑦& = 54 + 10𝑥𝑥𝑥𝑥!& + 55𝑥𝑥𝑥𝑥$& − 5𝑥𝑥𝑥𝑥!&$ − 53𝑥𝑥𝑥𝑥$&$ − 9𝑥𝑥𝑥𝑥!&𝑥𝑥𝑥𝑥$& + 𝜀𝜀𝜀𝜀&,  𝑖𝑖𝑖𝑖 = 1, 2, … , 𝑛𝑛𝑛𝑛,               (12) 
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Model 𝑥𝑥𝑥𝑥G 𝑥𝑥𝑥𝑥H 𝑥𝑥𝑥𝑥I (𝑦𝑦𝑦𝑦3G) (𝑦𝑦𝑦𝑦3H) (𝑦𝑦𝑦𝑦3I) (𝑦𝑦𝑦𝑦3J) d(𝑦𝑦𝑦𝑦3G) d(𝑦𝑦𝑦𝑦3H) d(𝑦𝑦𝑦𝑦3I) d(𝑦𝑦𝑦𝑦3J) D(%) 
OLS 0.5043 0.5892 0.0000 140.0 2070 451.8 69.02 0.4002 1.0000 0.5181 0.7966 63.7500 
LQR 0.8433 0.4373 1.0000 160.3 1840 463.6 69.6 0.8059 0.8404 0.6361 0.7150 74.4994 
LQR* 1.0000 0.5529 1.0000 167.7 2118 499.9 70.3 0.9532 1.0000 1.0000 0.6295 88.0120 
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Polynomial model III:  
𝑦𝑦𝑦𝑦& = 63 − 14𝑥𝑥𝑥𝑥!& + 23𝑥𝑥𝑥𝑥$& + 3𝑥𝑥𝑥𝑥b& + 17𝑥𝑥𝑥𝑥!&$ + 0.5𝑥𝑥𝑥𝑥$&$ − 4𝑥𝑥𝑥𝑥b&$ − 17𝑥𝑥𝑥𝑥!&𝑥𝑥𝑥𝑥$& + 5𝑥𝑥𝑥𝑥!&𝑥𝑥𝑥𝑥b& − 2𝑥𝑥𝑥𝑥$&𝑥𝑥𝑥𝑥b& + 𝜀𝜀𝜀𝜀& ,    

𝑖𝑖𝑖𝑖 = 1, 2, … , 𝑛𝑛𝑛𝑛,                                                (13) 
 
where 𝑥𝑥𝑥𝑥&!, 𝑥𝑥𝑥𝑥&$, and 𝑥𝑥𝑥𝑥&b, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, are the respective values of the explanatory variables 𝑥𝑥𝑥𝑥!, 
𝑥𝑥𝑥𝑥$ and 𝑥𝑥𝑥𝑥b from the coded values of the explanatory variables in Table 1 for the Polynomial 
models I and II, and Table 6 for the Polynomial model III, 𝜀𝜀𝜀𝜀&, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, is the 𝑖𝑖𝑖𝑖'( value of 
the normally distributed random error, 𝜺𝜺𝜺𝜺 with mean 0 and variance = 𝜎𝜎𝜎𝜎$.   
 
The random error variance varied from 1, 16, 49 and 100 for each of the respective polynomials 
in order to add more complex trends and patterns to the simulated data. Data from Table 1 and 
Table 6 are used as in Equations (11), (12) and (13) since they are standard CCD designs 
involving two (𝑥𝑥𝑥𝑥! and 𝑥𝑥𝑥𝑥$)  and three (𝑥𝑥𝑥𝑥!, 𝑥𝑥𝑥𝑥$ and 𝑥𝑥𝑥𝑥b) input (explanatory) variables, respectively. 
(Wan and Birch, 2011; He et al., 2012.).    
 
For each of the 500 data sets from each of polynomials, 𝜎𝜎𝜎𝜎$ varies from 1, 16, 49, and 100.  As 
the variance increases from 1 through 100, the discrepancies between the output generated 
from Equations (11), (12), and (13) and the true (underlying) output given by 𝑦𝑦𝑦𝑦& = 29 + 6𝑥𝑥𝑥𝑥!& −
10𝑥𝑥𝑥𝑥!&$  in Equation (11), 𝑦𝑦𝑦𝑦& = 54 + 10𝑥𝑥𝑥𝑥!& + 55𝑥𝑥𝑥𝑥$& − 5𝑥𝑥𝑥𝑥!&$ − 53𝑥𝑥𝑥𝑥$&$ − 9𝑥𝑥𝑥𝑥!&𝑥𝑥𝑥𝑥$& from Equation 
(12) and 𝑦𝑦𝑦𝑦& = 63 − 14𝑥𝑥𝑥𝑥!& + 23𝑥𝑥𝑥𝑥$& + 3𝑥𝑥𝑥𝑥b& + 17𝑥𝑥𝑥𝑥!&$ + 0.5𝑥𝑥𝑥𝑥$&$ − 4𝑥𝑥𝑥𝑥b&$ − 17𝑥𝑥𝑥𝑥!&𝑥𝑥𝑥𝑥$& + 5𝑥𝑥𝑥𝑥!&𝑥𝑥𝑥𝑥b& −
2𝑥𝑥𝑥𝑥$&𝑥𝑥𝑥𝑥b& from Equation (13) become larger, and the goal is to find out how each of the models 
is able to deal with the increasing difficulty of getting estimates of the output that are as close 
to the true output as possible. It is also of importance to see how each model handles these 
discrepancies as the dimension or the number of explanatory variables increases from one 
through three in Equations (11) to (13).  
 
For the 500 data each for variance of random error ranging from 1 through 100, the average of 
the optimal bandwidths are 0.6299, 0.4543, and 0.3379 for Polynomial model I, Polynomial 
model II, and Polynomial model III, respectively, when LQR model is applied. For LQR*, the 
respective averages are 0.1552, 0.1558, and 0.2667.  
 
A measure of model performance used here is the Average Sum of Squares of Error (AVESSE) 
given as: 
 

AVESSE = ∑ ∑ (E%2EH%))
0
%12

KLL
M12

dVV
,                   (14)  

 
where 𝑦𝑦𝑦𝑦& and 𝑦𝑦𝑦𝑦3&, 𝑖𝑖𝑖𝑖 = 1,2, … , 𝑛𝑛𝑛𝑛, are the raw (simulated) response and the model estimated 
response, respectively. AVESSE measures how close or accurate the estimated responses are 
to the raw response and the computer AVESSE computed from each regression model using 
500 data sets is presented in Table 11. 
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Table 11: Comparison of the AVESSE for the simulated data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results in Table 11 show that LQR* gives the best AVESSE across the three polynomials 
irrespective of the value of the random error variance. The results from 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄* are seen to be 
progressively better than those from its competitors as the variance of the error term increases, 
meaning that bandwidths selected by the proposed criterion offer higher flexibility as well as 
robustness against the deviation of the responses from the true polynomial models. This is an 
important feature for a regression model since it is an arduous task to determine a model that 
can match a given data with 100% precision (Box, 1976). 
 
Although, there is no basis for comparing the values of PRESS** and  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\ criterion since 
their respective penalizing term differs, Table 12 presents their averages for the sake of 
completeness.  
 

Table 12: The AVESSE of PRESS** and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 for the simulated data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From results in Table 12, across the three polynomials, it is observed that the average of each 
of the two versions of PRESS increases as the variance of the random error increases from 1 
through 100, except the one for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[\ at variance equal to 100. 
 
 
 
 
 

Polynomial 𝝈𝝈𝝈𝝈𝟐𝟐𝟐𝟐(𝜺𝜺𝜺𝜺) OLS LQR 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑷𝑷𝑷𝑷∗ 
I 1.0 0.8302 0.7213 0.6513 

16.0 13.3046 10.6168 9.0211 
49.0 40.7766 35.3550 33.0712 
100.0 83.9231 70.3257 68.8800 

II 1.0 0.5862 0.3365 0.3152 
16.0 9.3652 5.6501 5.6075 
49.0 28.8809 18.0361 16.0720 
100.0 58.4639 37.6078 32.3240 

III 1.0 0.8286 0.8255 0.5738 
16.0 13.3679 9.8815 7.4196 
49.0 40.8621 34.0595 22.4840 
100.0 82.8702 71.5926 42.6964 

Polynomial 
model 𝝈𝝈𝝈𝝈𝟐𝟐𝟐𝟐(𝜺𝜺𝜺𝜺) AVE𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷∗∗ AVE𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

I 1 0.1557 61,829 
16 2.4213 106,700 
49 7.3439 152,800 
100 15.0140 1,139,400 

II 1 1.3422 2,901 
16 4.9199 10,987 
49 13.3287 26,876 
100 26.7416 44,930 

III 1 2.7708 3,899 
16 5.5789 10,077 
49 13.0771 56,570 
100 23.0506 50717 
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IV. CONCLUSION  
 
In this paper, a modification of the PRESS** criterion to suit the selection of bandwidths for 
LQR in the response surface settings was proposed. The modified PRESS** criterion, denoted 
as PRESSsv criterion, involves the replacement of the DF term in the denominator of the 
PRESS** criterion with the difference in the sum of the variances of the rows of the Hat matrix 
of the LQR and that of the OLS models. This replacement was done in order to improve on the 
flexibility of the LQR model which happens to be the most appealing feature of nonparametric 
regression models in general.  
 
From the data analyzed, LQR utilizing PRESSsv (designated 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗) gives the best SSE and R2 
in seven out of the seven responses in the two problems from literature as well as the best SSE 
in the entire twelve simulated responses. Much more significantly, 𝐿𝐿𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄∗	 gives superior 
optimization results in the two problems taken from the literature, trumping those from OLS 
and the LQR. Specifically, better optimization result (Tables 5 and 10) translates to better use 
of scarce resources (raw material, time, e.tc). It enhances products’ conformity to standards as 
well as costumers’ satisfaction. 
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Appendix A: 

If the response is of nominal-the-better (NTB) type where the 𝑝𝑝𝑝𝑝#$ response acceptable value lies 
between an upper limit, U and a lower limit, L, 𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)- is given as: 

                              𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)- =

⎩
⎪
⎨

⎪
⎧

0
4
&'!(𝒙𝒙𝒙𝒙)+,
∅+, 5

𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) < 𝐿𝐿𝐿𝐿
									𝐿𝐿𝐿𝐿 ≤ 	𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) < ∅,

4.+&
'!(𝒙𝒙𝒙𝒙)

.+∅
5 									∅ ≤ 𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) ≤ 	𝑈𝑈𝑈𝑈,

0 𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) > 	𝑈𝑈𝑈𝑈,

    (1*) 

where ∅ is the target value of the 𝑝𝑝𝑝𝑝#$ response. 

If the goal is to maximize the 𝑝𝑝𝑝𝑝#$ response, 𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)- is given by a one-sided transformation as: 

 𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)-= 	 >
0

4&
'!(𝒙𝒙𝒙𝒙)+,
∅+,

5
1

𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) < 𝐿𝐿𝐿𝐿,
								𝐿𝐿𝐿𝐿 ≤ 𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) ≤ ∅

𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) > ∅,
,    (2*) 

where ∅ is interpreted as a large enough value of the 𝑝𝑝𝑝𝑝#$ response.  

If the goal is to minimize the 𝑝𝑝𝑝𝑝#$ response,𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)- is given by a one-sided transformation as: 

             𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)- 				= >
1

4.+&
'!(𝒙𝒙𝒙𝒙)

.+∅
5

0

𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) < ∅,
								∅ ≤ 𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) ≤ 𝑈𝑈𝑈𝑈

𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙) > 𝑈𝑈𝑈𝑈,
,    (3*) 

where	∅ is a small enough value of the 𝑝𝑝𝑝𝑝#$ response. 

The overall objective of the desirability criterion is getting the values of the explanatory variables that 
maximize the geometric mean (D) of all the individual desirability measures given as: 

                  𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 G'∏ 𝑑𝑑𝑑𝑑% '𝑦𝑦𝑦𝑦)%(𝒙𝒙𝒙𝒙)-/
%01 -

1 /⁄
I × 100%,   (4*) 
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Appendix B: Algorithm for implementing the LQR procedure using the modified PRESS** 

1. function pressdd=my_lqr_modified_press(D) 
2. x1; vector of values of explanatory variable  
3. x2; vector of values of explanatory variable 
4. ⋮ 
5. Xj; vector of values of explanatory variable 
6. y;  vector of values of response variable 
7. e=2.7183; 
8. k=j; % No of explanatory variables 
9. n=length(x1); % No of data points 
10. const=ones(n,1); % vector of ones 
11. X=[const x1 x2 … xj x1.^2 x2.^2 … xj.^2]; % LQR model matrix 
12. % use #13 - #18 to preallocate dimensions for vectors/arrays 
13. yLQR_max=zeros(n,1); % empty vector to store y estimates for large bandwidth  
14. yLQRcv=zeros(n,1);   % empty vector to store leave-one-out estimates of y 
15. a=zeros(n,1);        % empty vector to store diag elements of LQR Hat matrix       
16. yLQR=zeros(n,1);     % empty vector to store y estimates for bandwidths 
17. varHatmin=zeros(n,1);% empty vect to store var of elements in row of HLQR_max  
18. varHatmax=zeros(n,1);% empty vect to store variance of elements in row of HLQR 
19. % use #20 - #31 to get sum of minimum variance(Vmin) and maximum SSE (SSEmax) 
20. bmax=9999999999; 
21. for i=1:n;                               
22. w1max=((1/e).^(((x1(i)-x1)/bmax).^2)).*((1/e).^(((x2(i)-x2)/bmax).^2))…     

                                                    .*((1/e).^(((xj(i)-xj)/bmax).^2)); 
23. WWmax=sum(w1max); 
24. kerweight_max=w1max./WWmax; 
25. Wmax=diag(kerweight_max); % n by n diagonal weight matrix 
26. HatLQR_max=X(i,:)*((X'*Wmax*X)\(X'*Wmax)); % ith row of the LQR Hat matrix 
27. yLQR_max(i)=HatLQR_max*y; % LQR estimate of y for large bandwidth; 
28. varHatmin(i)=var(HatLQR_max); % variance of the elements in each row of HLQR_max 
29. Vmin=sum(varHatmin); % sum of variance of the elements in each row of HLQR_max 
30. end 
31. SSEmax=sum((y-yLQR_max).^2); 
32. % use #33 - #41 to get the kernel weights  
33. D;% vect that contains values of N as D(1) and C as D(2), as required by GATool; 
34. T=sum(y); 
35. bloc=D(1)*(D(2)*T-y)/(T*((D(2)*n)-1)); % vector of locally adaptive bandwidths 
36. %%%%%%%%%%%%%%%%% 
37. for i=1:n; 
38. w1=((1/e).^(((x1(i)-x1)./bloc).^2)).*((1/e).^(((x2(i)-x2)./bloc).^2))… 
39.                                              .*((1/e).^(((xj(i)-xj)./bloc).^2)) 
40. WW=sum(w1); 
41. kerweight=w1./WW; 
42. % use #43 - #50 to obtain leave-one-out estimates of y 
43. kerweight(i,:)=[];y(i,:)=[];X(i,:)=[]; 
44. W=diag(kerweight); % diagonal weight matrix for leave-one-out estimate of y  
45. a2=(X'*W*X)\X'*W*y; 
46. % use #47 - #48 to restore original dimensions of arrays 
47. X=[const x1 x2 … xj x1.^2 x2.^2…xj.^2];  
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48. y=[76.5 78 77 79.5 75.6 78.4 77 78.5 79.9 80.3 80 79.7 79.8]'; 
49. kerweight=w1./WW; 
50. yLQRcv(i)=X(i,:)*a2; 
51. % use #52 -#58 get LQR estimates of responses & maximum sum of variance(Vmax) 
52. W=diag(kerweight);  % n by n diagonal weight matrix for estimate of y 
53. HLQR=X(i,:)*((X'*W*X)\X'*W); 
54. a(i)=HLQR(1,i); 
55. yLQR(i)=HLQR*y; 
56. varHatmax(i)=var(HLQR);% variance of the elements in each row of HLQR 
57. Vmax=sum(varHatmax);% sum of variance of the elements in each row of HLQR 
58. end 
59. df=n-sum(a), 
60. % use #61 - #65 Get the values of goodness-of-fit 
61. PRESS=sum((y-yLQRcv).^2); 
62. SSE=sum((y-yLQR).^2); 
63. ymean=mean(y); 
64. ySSM=sum((y-ymean).^2); 
65. Rsqr=100*(1-(SSE/ySSM)); 
66. % use #67 - #72 to ensure bandwidths and PRESS_SV are within acceptable ranges  
67. PRESS_SV=PRESS/(((Vmax-Vmin))*((n-k-1)*((SSEmax-SSE)/SSEmax))); 
68. if PRESS_SV<0; pdstar=9215918691; 
69. elseif min(bloc)<0; pdstar=7777777777; 
70. elseif max(bloc)>1;pdstar=88888882929; 
71. else pdstar=PRESS/(((Vmax-Vmin))*((n-k-1)*((SSEmax-SSE)/SSEmax))); 
72. end 
73. pressdd=pdstar, 
74. df, 
75. Vmax, 
76. SSE, 
77. Rsqr, 
78. N=D(1), 
79. C=D(2), 
80. locally_adaptive_bandwidths=bloc, 

 


